Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi tổng phải tìm là S, tổng các số có 2 chữ số là \(S_1\), tổng các chữ số chia hết cho 3 là \(S_2\), tổng các số có 2 chữ số chia hết cho 5 là \(S_3\), tổng các số có 2 chữ số chia hết cho 15 là \(S_4\). Ta lần lượt có:
\(S_1=\frac{10+99}{2}\times90=4905\) ; \(S_2=\frac{12+99}{2}\times30=1665.\)
\(S_3=\frac{10+95}{2}\times18=945\) ; \(S_4=\frac{15+90}{2}\times6=315.\)
\(S=S_1-S_2-S_3+S_4=4905-1665-945+315=2610\)
( Phải cộng thêm \(S_4\) vì trong \(S_2\) và \(S_3\) có những số vừa chia hết cho 3 vừa chia hết cho 5(tức là chia hết cho 15) nên những số đó đã được trừ đi 2 lần)
gọi A là tổng các số 2 chữ số là:
A= 10+11+12+13+...+99
=10+99x90:2=4905
gọi B là tổng các chữ số chia hết cho 3:
B=12+15+18+...+99
=12+99x30:2=1665
gọi C là tổng các chữ số chia hết cho 5:
C=10+15+20+..+99
= 10+95x18:2=945
gọi D là tổng hai số chia hết cho cả 3 và 5:
D=15+30+...+90
=15+90x6:2=315.
Tổng tất cả hai số tự nhiên không chia hết cho cả 3 và 5 là:
4905-1665-945+315=2610.
Đ/s:...
Giải:
Vì số chia hết cho 5 có tận cùng bằng 0 hoặc 5 mà số \(\overline{x279y}\) chia 5 dư 3 nên
y = 3 hoặc y = 8
Mà \(\overline{x279y}⋮2\Rightarrow y=8\)
Để \(\overline{x2798}\) chia 9 dư 3 thì \(x+29\) chia 9 dư 3 \(\Rightarrow x=1\)
Vậy \(x=1,y=8\)
thay các dấu * bởi các chữ số thích hợp để số *84* chia hết cho tất cả các số 2,3,5,9
Để số trên chia hết cho 2 và 5 thì số đó có tận cùng là 0
Khi đó số trên có dạng *840
Để *840 chia hết cho 3 và 9 => *840 chia hết cho 9 => * + 8 + 4 + 0 chia hết cho 9
=> * + 12 chia hết cho 9 => * = 6
Vậy số phải tìm là 6840
ta thay *84* thành a84b. (cho dễ nha.)
vì b chia hết cho 2 và 5 nên b=0
vì a840 chia hết cho 9 => a =6 (mình chỉ sử dụng chia hết cho 9 vì nêu chia hết cho 9 thì chắc chắn sẽ chia hết cho 3)
vậy *84*=6840
7a142b đáp án là
a = 4
b = 0