Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng bđt Svac-xơ:
\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)
=> hpt vô nghiệm
c) Ở đây x,y,z là các số thực dương
Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)
=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64
=>3x+2y=94 và 2x+2y=68
=>x=26 và x+y=34
=>x=26 và y=8
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)
=>x+1=18/35; y+4=9/13
=>x=-17/35; y=-43/18
a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))
Đặt \(\dfrac{x}{x+1}\) là A
\(\dfrac{y}{y+1}\) là B
Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)
Giải HPT (1) ta được A= \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)
+Với A=\(\dfrac{7}{5}\) ta có:
\(\dfrac{x}{x+1}=\dfrac{7}{5}\)
<=>\(5x=7x+7\)
<=>-2x=7
<=> x=\(-\dfrac{7}{2}\)
+Với B = \(-\dfrac{4}{5}\) ta có:
\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)
<=>5y=-4y-4
<=>9y=-4
<=>y=\(-\dfrac{4}{9}\)
Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)