Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x-2007\right|\ge0\forall x\)\(\Rightarrow2\left|x-2007\right|\ge0\forall x\)
\(\Rightarrow2\left|x-2007\right|+3\ge3\forall x\Rightarrow VT\ge3\forall x\left(1\right)\)
Lại có: \(\left|y-2008\right|\ge0\forall y\)\(\Rightarrow\left|y-2008\right|+2\ge2\forall y\)
\(\Rightarrow\frac{1}{\left|y-2008\right|+2}\le2\forall y\)
\(\Rightarrow\frac{6}{\left|y-2008\right|+2}\le\frac{6}{2}=3\forall y\Rightarrow VP\le3\forall y\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có: \(VT\ge3\ge VP\) xảy ra khi và chỉ khi
\(VT=VP=3\)\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}\)
x+xy = 3-y
x(1+y) =3 - y => x =\(\frac{3-y}{1+y}\)
nếu y = 1 thi x = 1
y = 2 thì x = 1/3 (loại)
y = 3 => x = 0
y = -2 => x = -5
y = -3 => x = -3
Ta có : x + y + xy + 1 = 4
=> x.(y+1) + (y+1) = 4
=> (x+1).(y+1) = 4
Vì x,y nguyên nên ta xét các hệ phương trình :
x + 1 = 4 và y + 1 = 1 => x = 3, y = 0
x + 1 = -4 và y + 1 = -1 => x = -5, y = -2
x + 1 = 1 và y +1 = 4 => x = 0, y = 3
x + 1 = -1, y + 1 = -4 => x = -2, y = -5
x + 1 = 2, y + 1 = 2 => x = 1, y = 1
x + 1 = -2, y + 1 = -2 => x = -3, y = -3
Vậy (x,y) = .......( tự điền nốt nha) =) =)
|x - 6| + |y - 1| = 4 => |x - 6| = 4 - |y - 1|
Vì |x - 6| \(\ge\) 0 => 4 - |y - 1| \(\ge\) 0 => |y - 1| \(\le\) 4 Mà |y - 1| \(\ge\) 0 và y nguyên nên |y - 1| = 0; 1; 2; 4
+) |y - 1| = 0 => y - 1 = 0 và |x - 6| = 4
y - 1 = 0 => y = 1 => x = y + 3 = 4 .
Khi đó |x - 6| = |4 - 6| = 2 \(\ne\) 4 => Loại
+) |y - 1| = 1 => |x - 6| = 3 và y - 1= 1 hoặc y - 1 = -1
y - 1 = 1 => y = 2 => x = y + 3 = 5 => |x - 6| = 1 \(\ne\) 3 => Loại
y - 1 = -1 => y = 0 => x = 3 => |x - 6| = 3 thỏa mãn
+) |y - 1| = 2 => |x - 6| = 2 và y - 1 = 2 hoặc y - 1 = -2
y - 1 = 2 => y = 3 => x = 6 => |x - 6| = 0 \(\ne\) 2 (Loại)
y - 1 = - 2 => y = -1 => x = 2 => |x - 6| = 4 \(\ne\) 2 (Loại)
+) |y - 1| = 3 => |x - 6| = 1 và y - 1 = 3 hoặc y - 1 = -3
y - 1 = 3 => y = 4 => x = 7 => |x - 6| = 1 (Thỏa mãn)
y - 1 = -3 => y = -2 => x = 1 => |x - 6| = 5 \(\ne\) 1 (Loại)
+) |y - 1| = 4 => |x - 6| = 0 => x - 6 = 0 => x = 6 => y = 6 - 3 = 3
=> |y - 1| = 2 \(\ne\) 4 (Loại)
Vậy có các cặp (x; y) = (3;0) ; (7; 4)
khó quá xem trên mạng