K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(2\left|x\right|+5\left|y\right|=9-\left|x\right|+2\left|y\right|\)

\(2\left|x\right|+\left|x\right|+5\left|y\right|-2\left|y\right|=9\)

\(\left|x\right|\left(2+1\right)+\left|y\right|\left(5-2\right)=9\)

\(3\left|x\right|+3\left|y\right|=9\)

\(3.\left(\left|x\right|+\left|y\right|\right)=9\Rightarrow\left|x\right|+\left|y\right|=3\)

Mà : \(\left|x\right|\ge0;\left|y\right|\ge0\)

Ta có : Với \(\left|x\right|=0;\left|y\right|=3\Rightarrow x=0;y\in\left\{-3;3\right\}\)

Với \(\left|x\right|=3;\left|y\right|=0\Rightarrow x\in\left\{-3;3\right\};y=0\)

Với \(\left|x\right|=1;\left|y\right|=2\Rightarrow x\in\left\{-1;1\right\};y\in\left\{-2;2\right\}\)

Với \(\left|x\right|=2;\left|y\right|=1\Rightarrow x\in\left\{-2;2\right\};y\in\left\{-1;1\right\}\)

Vậy ...

11 tháng 12 2017

a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)

\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)

\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)

Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.

Ta có bảng:

x-1-3-113
x-2024
2-y13-3-1
y1-253

Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).

b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.

Ta có bảng:

(x-1)2124
x0 hoặc 2\(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) -1 hoặc 3
y + 1-4 -1
y-3 -2

Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).

7 tháng 3 2020

1, Có (x-2)2\(\ge\)0

(y-2)2\(\ge\)0

=>(x-2)2.(y-3)2\(\ge\)0

Mà (x-2)2.(y-3)2=-4

Vậy không có x, y thỏa mãn

7 tháng 3 2020

Có 111...1=11.1010...01

Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô

(phần này hơi sơ sài nên có cái gì phải hỏi luôn

22 tháng 11 2019

b. Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath