Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : xy - 4x - 3y = 5
=> xy - 4x - 3y + 12 = 5 + 12
=> x(y - 4) - 3(y - 4) = 17
=> (x - 3)(y - 4) = 17
Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)
Khi đó ta có 17 = 1.17 = (-1).(-17)
Lập bảng xét các trường hợp
x - 3 | 1 | 17 | -1 | -17 |
y - 4 | 17 | 1 | -17 | -1 |
x | 4 | 20 | 2 | -14 |
y | 21 | 5 | -13 | 3 |
Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)
Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5
Mà (4;5)=1 => x chia hết cho 5
Mà 0 < 4x < 65
=> 0 < x < 17
=> x thuộc {5 ; 10 ; 15}
+ Với x = 5; ta có: 4 × 5 + 5 × y = 65
=> 20 + 5 x y = 65
=> 5 x y = 65 - 20 = 45
=> y = 45 : 5 = 9
+ Với x = 10, ta có: 4 × 10 + 5 x y = 65
=> 40 + 5 × y = 65
=> 5 x y = 65 - 40 = 25
=> y = 25 : 5 = 5
+ Với x = 15, ta có: 4 × 15 + 5 × y = 65
=> 60 + 5 × y = 65
=> 5 x y = 65 - 60 = 5
=> y = 5 : 5 = 1
Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1
chắc thek chứ mik ko chắc ăn
Ta có:x^2-2x+1=6y^2-2x+2
x^2+1-2=6y^2-2x+2x
x^2-1=6y^2
y^2=x^2-1/6
Vì y^2 thuộc ước của x^2-1/6 suy ra y^2 là số chẵn mà y^2 là số chẵn suy ra y=2
Thay vào ta có:x^2-1/6=4
x^2-1=24
x^2=25
suy ra x=5.Vậy x=5:y=2 (Thử lại nhé)
1.
PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$
$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$
$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1,2$
Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)
$\Rightarrow d=1$
Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
$y^2+1, y+1$ cũng là scp
Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$
$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$
$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$
2.
$x^4+2x^2=y^3$
$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$
Đặt $d=(y+1, y^2-y+1)$
$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$
$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$
$\Rightarrow 3y\vdots d$
Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,
$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)
Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$
$\Rightarrow y\vdots d$
Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
$y+1, y^2-y+1$ cũng là scp
Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$
Có:
$y^2-y+1=b^2$
$\Leftrightarrow (2y-1)^2+3=(2b)^2$
$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$
Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$