Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\) \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)
- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp
- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp
Tổng cộng có 8 cặp số nguyên thỏa mãn
2.
\(x\left(y+3\right)=7y+21+1\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)
\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
a) Ta có : \(\left(x+3\right)\left(y+2\right)=1\)
Vì \(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau :
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | -1 | 1 |
y | -3 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-2;-3\right);\left(-4;-1\right)\right\}\)
Các phần sau làm tương tự
a) (x+3).(y+2)=1
=>x+3 và y+2 thuộc Ư(1)={1;-1}
Ta có bảng sau
x+3 | 1 | -1 |
y+2 | 1 | -1 |
x | -2 | -4 |
y | -1 | -3 |
Vậy....
Các câu khác lm tương tự nha
a) Vì x, y thuộc Z mà (x-1) (y-2) = 7
=> 7 chia hết cho x - 1; y - 2
=> x - 1; y - 2 thuộc Ư (7) = { -1; 1; -7; 7 }
Ta có :
x-1 | -7 | -1 | 1 | 7 |
y-2 | -1 | -7 | 7 | 1 |
x | -6 | 0 | 2 | 8 |
y | 1 | -5 | 9 | 3 |
Vậy các cặp x, y thỏa mãn là : x =-6,y=1 ; x=0,y=-5 ; x=2,y=9 ; x=8,y=3
Làm tương tự vs các câu còn lại
\(\left(x-1\right)\left(y-2\right)=7\)
\(\Rightarrow x-1;y-2\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng sau :
x - 1 | 1 | - 1 | 7 | - 7 |
x | 2 | 0 | 8 | - 6 |
y - 2 | 1 | - 1 | 7 | - 7 |
y | 3 | 1 | 9 | - 5 |
Vậy ..........
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
a) (x+5)(y-2)=13
Ta có: 13=1.13=-1.(-13)
Ta có bảng:
Vậy các cặp(x;y) thỏa mãn là: (-4;15);(-6;-11)
Hok "tuốt" nha^^