K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3xy+2x-5y=6\)

\(\Leftrightarrow9xy+6x-15y=18\)

\(\Leftrightarrow\left(9xy+6x\right)-\left(15y+10\right)=8\)

\(\Leftrightarrow3x.\left(3y+2\right)-5\left(3y+2\right)=8\)

\(\Leftrightarrow\left(3x-5\right)\left(3y+2\right)=8\)

Do x,y nguyên nên ta có bảng sau

3x - 518-1-842-4-2
3y + 281-8-124-2-4
x\(\frac{13}{3}\)( loại )\(\frac{4}{3}\)( loại )-13\(\frac{7}{3}\)( loại )\(\frac{1}{3}\)( loại )
y2\(-\frac{1}{3}\)( loại )\(-\frac{10}{3}\)( loại )-1 0

\(\frac{2}{3}\)( loại )

\(-\frac{4}{3}\)( loại )-2 

Bạn tự KL nhé

20 tháng 2 2023

loading...  

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:

$3xy+2x-5y=6$

$x(3y+2)-5y=6$

$3x(3y+2)-15y=18$

$3x(3y+2)-5(3y+2)=8$

$(3y+2)(3x-5)=8$

Đến đây lập bảng xét giá trị thôi bạn.

=>3xy-3x=6

=>3x(y-1)=6

=>x(y-1)=2

=>\(\left(x;y-1\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;3\right);\left(2;2\right);\left(-1;-1\right);\left(-2;0\right)\right\}\)

15 tháng 3 2022

\(\left(x-1\right)^2+5y^2=6\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\pm1\\y=\pm1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=0;y=\pm1\\x=2;y=\pm1\end{cases}}\)

26 tháng 12 2022

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

26 tháng 12 2022

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

26 tháng 1 2023

x=3
y=1
ez:))

7 tháng 4 2023

giải thik

11 tháng 4 2020

Câu hỏi của kalista - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo!

11 tháng 4 2020

-3xy+4y-6x=27

-3xy+4y-(6x+8)=19

y(4-3x)-2(4-3x)=19

(y-2)(4-3x)=19

Vì y;x là số nguyên => y-2;4-3x là số nguyên

                               =>  y-2;4-3x ∈ Ư(19)

Ta có bảng:

y-2119-1-19
4-3x191-19-1
x3211-17
y-51115/3 (loại)

Vậy cặp số nguyên (y;x) thỏa mãn là: (3;-5) ; (21;1) ; (1;11) .