Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: x2-2y2 = 1
Vi x,y deu la so nguyen to nen: x2\(\ge\) 4 2y2\(\ge\)8
Vi vay: x2-2y2 < 0 (trái với đề bài đã cho)
Suy ra: Khong co gia tri nao cuar x,y ca
\(x^2-2y^2=1\)
\(\Leftrightarrow x^2=2y^2+1\)
Vì \(x^2\)là số chính phương lẻ
\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố
\(\Rightarrow y=2;x=3\)
biến đổi biểu thức ta có:
\(\left(x^2-1\right):2=y^2\)
ta có: x và y là số nguyên dương nên:
+) x > y và x là số lẻ nên:
từ đó đặt x=2k+1(k là số nguyên dương)
biểu thức tương đương :
\(2.k.\left(k+1\right)=y^2\left(+\right)\)
để ý ta thấy:
y là số nguyên tố nên y2 se là số nguyên dương và có 3 ước là:
(1,y,y2)
từ(1) nên thây được y2 chia hết cho 2 => y=2=>k=1
vậy x=3
nên:y=2 và x=3
\(PT\Leftrightarrow x^2=2y^2+1\). Vì x2 là số chính phương lẻ.
\(\Rightarrow x^2=2y^2+1\equiv1\left(mod4\right)\)mà y số nguyên.
\(\Rightarrow y=2,x=3\)
Lê Minh Tú cảm ơn bạn nhiều nhé !