Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)
2x - 5y + 5xy = 14
<=> 2x - 2 - 5y + 5xy = 12
<=> 2(x - 1) + 5y(x - 1) = 12
<=> (x - 1)(2 + 5y) = 12
=> (x - 1) và (2 + 5y) \(\in\)Ư(12)
Để (2 + 5y) \(\in\)Ư(12) mà y là số nguyên thì (2 + 5y) \(\in\){-3;12;2}
Khi đó (x - 1) \(\in\){-4;1;6}
Ta có bảng
x - 1 | -4 | 1 | 6 |
2 + 5y | -3 | 12 | 2 |
x | -3 | 2 | 7 |
y | -1 | 2 | 0 |
Vậy các cặp (x;y) thỏa mãn là (-3;-1) ; (2;2) ; (7;0)
\(xy-x-y=2\)
\(\Rightarrow xy-x-y+1=3\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Tự xét được chứ :">
giải
2x - 5y + 5xy = 2x - 5y ( x-1 )
= 2x - 2 - 5y(x-1 ) = 12
= (2 - 5y) (x-1) = 12
Sau đó tìm ước