Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Gọi hai cạnh góc vuông là a, b; cạnh huyền là c;
Dựa vào tính chất Pi-ta-go, tỉ số của cạnh huyền là: \(\sqrt{3^2}+4^2=\sqrt{9}+16=5\);
Dựa vào tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3;\)
Vì a/3 = 3 => a = 3*3 = 9;
b/4 = 3 => b = 4*3 = 12;
c/5 = 3 => c = 5*3 = 15;
Gọi hai cạnh góc vuông và cạnh huyền của tam giác vuông lần lượt là a(cm), b(cm) và c(cm)(Điều kiện: a>0; b>0; c>0)
Vì các cạnh góc vuông tỉ lệ với 5 và 12 nên a:b=5:12
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{12}\)
Đặt \(\dfrac{a}{5}=\dfrac{b}{12}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=12k\end{matrix}\right.\)
Áp dụng định lí Pytago, ta được:
\(c^2=a^2+b^2\)
\(\Leftrightarrow c^2=\left(5k\right)^2+\left(12k\right)^2=169k^2\)
hay c=13k
Ta có: Chu vi của tam giác bằng 60cm
nên a+b+c=60
\(\Leftrightarrow5k+12k+13k=60\)
\(\Leftrightarrow30k=60\)
hay k=2
Ta có: a=5k(cmt)
nên a=10(cm)
Ta có: b=12k(cmt)
nên b=24(cm)
Ta có: c=13k(cmt)
nên c=26(cm)
Vậy: Độ dài các cạnh của tam giác vuông cần tìm lần lượt là 10cm; 24cm và 26cm