Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
\(x^2+15^y=2^z\)(\(z\ge4\))
Do VT chẵn và 15 lẻ nên x lẻ
Khi đó x có dạng 2k+1(\(k\in N\))
\(\Rightarrow x^2\equiv1\left(mod4\right)\)
TH1:y chẵn \(\Rightarrow15^y\equiv1\left(mod4\right)\)
\(\Rightarrow VT\equiv2\left(mod4\right)\)
\(\Rightarrow2^z\equiv2\left(mod4\right)\).Điều này chỉ xảy ra khi z=1 (nếu z>1 thì 2z chia hết cho 4)
Mà z>=4 => Loại TH này
\(15⋮3\)\(\Rightarrow x^2\equiv2\left(mod3\right)\)(Vô lí)
Vậy y lẻ.
TH2:Với y lẻ thì \(15^y\equiv-1\left(mod4\right)\)mà \(2^z⋮4\)
\(\Rightarrow x^2\equiv-1\left(mod4\right)\)(Vô lí)
Vậy ko có x,y,z là số nguyên dương thỏa mãn
@ Tuấn Đạt@ Sao lại không có nghiệm thỏa mãn. ??
x = 1; y = 1; z = 4. thỏa mãn mà.