K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(2x^2-2x-x^2+6=0\) 

\(\Leftrightarrow x^2-2x+1+5=0\)

\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)

Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)

b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\) 

\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)

\(\Leftrightarrow3-3x^2=0\)

\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)

\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)

\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)

Vậy x=\(\dfrac{-1}{2}\)

d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)

\(\Leftrightarrow x^3-27-x^3+4x-15=0\)

\(\Leftrightarrow4x-42=0\)

\(\Leftrightarrow x=10,5\)

Vậy x=10,5

5 tháng 7 2017

a) \(A=\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(3x-4\right)+5x\)

\(=\left(2x^2+6x-x-3\right)-\left(3x^2-4x-6x+8\right)+5x\)

\(=\left(2x^2+5x-3\right)-\left(3x^2-10x+8\right)+5x\)

\(=2x^2+5x-3-3x^2+10x-8+5x\)

\(=x^2+20x-11\)

b) \(5x\left(2x^2-3x+1\right)-2x\left(x+1\right)\left(x-2\right)\)

\(=10x^3-15x^2+5x-2x\left(x^2-2x+x-2\right)\)

\(=10x^3-15x^2+5x-2x^3+4x^2-2x^2+4x\)

\(=8x^3-13x^2+9x\)

c) \(\left(3x+2\right)\left(x+1\right)-2x\left(x+3\right)-2x+1\)

\(=3x^2+3x+2x+2-2x^2-6x-2x+1\)

\(=x^2-3x+3\)

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

20 tháng 7 2018

Tìm x, biết:

1) 2x ( x - 5)  - x ( 2x - 4 ) = 15

<=> 2x2 - 10x - 2x2 + 4x - 15 = 0

<=> -6x - 15 = 0

<=> -6x = 15

<=> x = -15/6

2)  ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6

<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0

<=> -4x = -16

<=> x = 4

3)  4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x

<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0

<=> x + 4 = 0

<=> x = -4

4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5

<=> 2x+ x + 6x + 3 - 2x2 - 4x + 5 = 0

<=> 3x + 8 = 0

<=> 3x = -8

<=> x = -8/3

5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0

<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0

.......

6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)

<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0

<=> -2x + 40 = 0

<=> -2x = -40

<=> x = 20

Còn lại tương tự ....

19 tháng 7 2018

1)2x^2-10x-2x^2+14x=15

4x=15

x=15/4

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

16 tháng 3 2020

1) Ta có: \(4x^2-1=\left(2x+1\right).\left(3x-5\right)\)

\(\Leftrightarrow\left(2x+1\right).\left(2x-1\right)-\left(2x+1\right).\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right).\left[\left(2x-1\right)-\left(3x-5\right)\right]=0\)

\(\Leftrightarrow\left(2x+1\right).\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right).\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\-x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=4\)

2) Ta có: \(\left(x+1\right)^2=4.\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(x+1\right)^2-\left[2.\left(x-1\right)\right]^2=0\)

\(\Leftrightarrow\left[\left(x+1\right)+2.\left(x-1\right)\right].\left[\left(x+1\right)-2.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+1+2x-2\right).\left(x+1-2x+2\right)=0\)

\(\Leftrightarrow\left(3x-1\right).\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(TM\right)\\x=3\left(TM\right)\end{matrix}\right.\)

Vậy \(x=\frac{1}{3}\) hoặc \(x=3\)

3) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x.\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x.\left(2x^2-x+6x-3\right)=0\)

\(\Leftrightarrow x.\left[x.\left(2x-1\right)+3.\left(2x-1\right)\right]=0\)

\(\Leftrightarrow x.\left(x+3\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(TM\right)\\x=-\frac{1}{2}\left(TM\right)\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=-3\) hoặc \(x=-\frac{1}{2}\)

4) Ta có: \(2x=3x-2\)

\(\Leftrightarrow2x-3x=-2\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(TM\right)\)

Vậy \(x=2\)

5) Ta có: \(x+15=3x-1\)

\(\Leftrightarrow x-3x=-1-15\)

\(\Leftrightarrow-2x=-16\)

\(\Leftrightarrow x=8\left(TM\right)\)

Vậy \(x=8\)

6) Ta có: \(2-x=0,5x-4\)

\(\Leftrightarrow-x-0,5x=-4-2\)

\(\Leftrightarrow-1,5x=-6\)

\(\Leftrightarrow x=4\left(TM\right)\)

Vậy \(x=4\)

16 tháng 3 2020

1) 4x2-1=(2x+1)(3x-5)

<=> (2x-1)(2x+1)-(2x+1)(3x-5)=0

<=> (2x+1)(2x-1-3x+5)=0

<=> (2x+1)(4-x)=0

<=>\([^{2x+1=0}_{4-x=0}< =>[^{2x=-1}_{x=4}< =>[^{x=\frac{-1}{2}}_{x=4}\)

2) (x+1)2= 4(x2-2x+1)

<=> x2+2x+1-4(x2-2x+1)=0

<=> x2+2x+1-4x2+8x-4=0

<=> -3x2+10x-3=0

<=> -3x2+x+9x-3=0

<=> -x(3x-1)+3(3x-1)=0

<=> (3x-1)(3-x)=0

<=> \([^{3x-1=0}_{3-x=0}< =>[^{3x=1}_{x=3}< =>[^{x=\frac{1}{3}}_{x=3}\)

3) 2x3+5x2-3x=0

<=> 2x(x2+\(\frac{5}{2}x-\frac{3}{2})=0\)

<=> 2x\(\left[x^2+2.\frac{5}{4}x+\frac{25}{16}-\left(\frac{25}{16}+\frac{3}{2}\right)\right]=0\)

<=> 2x\(\left[\left(x+\frac{5}{4}\right)^2-\frac{49}{16}\right]=0\)

<=> 2x\(\left(x+\frac{5}{4}-\frac{7}{4}\right)\left(x+\frac{5}{4}+\frac{7}{4}\right)=0\)

<=> x\(\left(x-\frac{1}{2}\right)\left(x+3\right)=0\)

<=>\(\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\\x=-3\end{matrix}\right.\)

4) 2x=3x-2

<=> 2x-3x=-2

<=> -x=-2

<=> x=2

5) x+15=3x-1

<=> x-3x=1-15

<=> -2x=-14

<=> x=-14:-2

<=> x=7

6) 2-x=0,5x-4

<=> -x-0,5x=-4-2

<=> -1,5x=-6

<=> x= -6: -1,5

<=> x=4

học tốt nghen

11 tháng 12 2017

a, (x-2)^2 - (x-3)(x+3)=6

x^2-4x+4-(x^2-9)=6

x^2-4x+4-x^2+9=6

(x^2-x^2)-4x+13=6

-4x=-7

x=1,75

b, 4(x-3)^2 - (2x-1)(2x+1)=10

4(x^2-6x+9)-(4x^2-1)=10

4x^2-24x+36-4x^2+1=10

-24x+37=10

x=9/8

c,(x-4)^2 - (x+2)(x-2)=6

x^2-8x+16-(x^2-4)=6

x^2-8x+16-x^2+4=6

-8x+20=6

x=7/4

d, 9(x+1)^2 - (3x-2)(3x+2)=10

9(x^2+2x+1)-(9x^2-4)=10

9x^2+18x+9-9x^2+4=10

18x+13=10

x=-1/6

1 tháng 7 2018

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(-4x+13=6\)

\(-4x=6-13\)

\(-4x=-7\)

\(x=\frac{-7}{-4}\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)

\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)

\(4x^2-24x+36-4x^2+1=10\)

\(-24x+37=10\)

\(x=\frac{9}{8}\)

Vậy \(x=\frac{9}{8}\)

\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)

\(x^2-8x+16-\left(x^2-4\right)=6\)

\(x^2-8x+16-x^2+4=6\)

\(-8x+20=6\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)

\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)

\(9x^2+18x+9-9x^2+4=10\)

\(18x+13=10\)

\(x=\frac{-1}{6}\)

Vậy \(x=\frac{-1}{6}\)

14 tháng 7 2020

giúp mk vsssss

hơi dài, thôi chăm chỉ tí có sao :v =))

\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)

\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)

\(=-4x^4+2x^3-x-3x^5+2x^2\)

\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)

\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)

\(=4x^2-4x+8x^5-4x^4+4x^3\)

Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)

\(=-2x^3+3x-11x^5-2x^2\)

Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =((