K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

tổng 3 số là

(2+3+5):2=5

số x là

5-3=2

số y là

2-2=0

số z là

5-2=3

ĐS:

21 tháng 10 2018

(x-1000)/24+(x-998)/26+(x-996)/28 = 3

Lời giải:

  1. Tập xác định của phương trình

  2. Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

  3. Chia cả hai vế cho cùng một số

  4. Đơn giản biểu thức

  5. Lời giải thu được

Ẩn lời giải 

Kết quả: Giải phương trình với tập xác định

x=1024

26 tháng 10 2015

nhấn lộn lớp 1 là lớp 7 mà quan trọng j cái lớp quan trọng có giải dc ko mới là chuyện để come

26 tháng 10 2015

mk thích bài này. dễ mà

21 tháng 9 2019

Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.

21 tháng 9 2019

Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)

Xét dấu nó thì e chỉ cần xét từng cái là được

Cái thứ nhất:

\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Cái thứ 2:

\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)

\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)

Kết hợp cả 2 điều kiện thì suy ra được

\(x=z=0;y=3\)

bạn tham khảo nè:

với x,y,z thuộc số hữu tì ta có 

bn tự chép đề tại chỗ này nh a.

từ đề bài ,cộng vế theo vế ta có 

x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9

suy ra (x+y+z)(x+y+z)=9 suy ra (x+y+z)^2=3^2 hay =(-3)^2

suy ra x+y+z=3 hay=-3

xét trường hợp 1 ta có x+y+z=3

suy ra x(x+y+z)=-5 suy ra x=-5/3

suy ra y=9/3=3

suy ra z=5/3

tương tự xét trường  hợp thứ hai ta có x+y+z=-3

suy ra x=-5/-5=5/3

suy ra y=9/-3=-3

suy ra z=5/-3=-5/3

27 tháng 6 2019

Cộng theo từng vế các đẳng thức đã cho, ta được:
\(\left(x+y+z\right)^2=9\Rightarrow x+y+z=\pm3\)

Nếu \(x+y+z=3\)thì \(x=\frac{-5}{3};y=3;z=\frac{5}{3}\)

Nếu \(x+y+z=-3\)thì \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)

29 tháng 7 2020

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

29 tháng 7 2020

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1