Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + 3c) + (a+ 2b) = 8 + 9 = 17
=> 2a + 2b + 3c = 17 => 2.(a+b+ c) + c = 17
a + b + c lớn nhất => 2.(a+b+c) lớn nhất => c nhỏ nhất ; c không âm => c = 0
=> a = 8 => 8 + 2b = 9 => b = 1/2
Vậy a = 8; b = 1/2; c = 0 thì...
Ta có:
a+2c+a+3b=8+9
=> 2a+3b+2c=17
=> 2(a+b+c)+c=17
Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất
=> c nhỏ nhất không âm.
=> a=8
b=1/2
c= 0
Vậy a=8
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Biến đổi vế 2 :
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )
\(=\frac{bc+ac+ab}{abc}\)
Ta có :
\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)
\(=\frac{abc+abc+abc}{abc}\)\(=3\)
→ ( a + b + c ) = 3
Ta có : 3 . 3 = 9 => ĐPCM
a + 3c = 8 => a = 8 - 3c \(\ge\) 0 => 3c \(\le\) 8 => 0 \(\le\) c \(\le\) \(\frac{8}{3}\) (*)
a + 2b = 9 => a = 9 - 2b \(\ge\) 0 => 2b \(\le\) 9 => 0 \(\le\) b \(\le\) \(\frac{9}{2}\)
a + 3c + a + 2b = 2.(a + b + c) + c = 17; a+ b + c lớn nhất => c nhỏ nhất kết hợp với (*) => c = 0
=> a = 8 => 2b = 1 => b = 1/2
Vậy...