K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

ta có:\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)\(\Rightarrow\frac{1}{2}\times a\times\frac{1}{6}=\frac{2}{3}\times b\times\frac{1}{6}=\frac{3}{4}\times c\times\frac{1}{6}\)

\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)

\(\Rightarrow\frac{a}{12}=5\Rightarrow a=12\times5=60\)

\(\Rightarrow\frac{b}{9}=5\Rightarrow b=9\times5=45\)

\(\Rightarrow\frac{c}{8}=5\Rightarrow c=8\times5=40\)

chúc bạn học tốt!!

17 tháng 12 2019

\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c=\frac{a}{2}=\frac{2b}{3}=\frac{3b}{4}\)

\(\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}=\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)

\(\Rightarrow a=5.12=60\)\(b=5.9=45\)\(c=5.8=40\)

Vậy \(a=60\)\(b=45\)\(c=40\)

https://olm.vn/hoi-dap/detail/211794512831.html

Tham khảo ở link này (mình gửi cho)

Học tốt!!!!!!!!!!

20 tháng 9 2018

\(a)\)\(b^2-b+3\left(b+1\right)=0\)

\(\Leftrightarrow\)\(b^2-b+3b+3=0\)

\(\Leftrightarrow\)\(b^2+2b+1=-2\)

\(\Leftrightarrow\)\(\left(b+1\right)^2=-2\) ( vô lí vì \(\left(b+1\right)^2\ge0\) ) 

Vậy không có giá trị của b thỏa mãn đề bài 

Chúc bạn học tốt ~ 

20 tháng 9 2018

\(b)\)\(\frac{4x-3}{2}=\frac{5-2x}{3}\)

\(\Leftrightarrow\)\(3\left(4x-3\right)=2\left(5-2x\right)\)

\(\Leftrightarrow\)\(12x-9=10-4x\)

\(\Leftrightarrow\)\(12x+4x=10+9\)

\(\Leftrightarrow\)\(16x=19\)

\(\Leftrightarrow\)\(x=\frac{19}{16}\)

Vậy \(x=\frac{19}{16}\)

Chúc bạn học tốt ~ 

22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

13 tháng 9 2018

bài 1: có 2x-y=1=> 2x=1+y=> x =1+y/2 (1)

thay (1) vào pt trên: x/2=y/5=(1+y/2)/2=y/5 => 1+y/4=y/5=> 5(1+y)=4y (nhân chéo)=> y= -5=> x=(1+-5)/2=-2

13 tháng 9 2018

câu 2: a) tương tự như bài 1:thay b=4+a vào pt => a=8 và b=12

bài 3 dể mà!!!:)).    3^n+2 +3^n=270=> 3^n.3^2+3^n=270=> 3^n.(9+1)=270( vì 3 bình =9)=> 3^n=27=3^3 => n=3

17 tháng 12 2017

\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\)

hay \(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)

Áp dụng tính chất ....

\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)

\(\Rightarrow a=5.12=60;b=5.9=45;c=5.8=40\)

Vậy ...

17 tháng 12 2017

=,= zễ mà thánh

Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)và a-b-15

\(\Rightarrow\frac{1a}{2}=\frac{2b}{3}=\frac{3c}{4}\)và a -b =15

\(\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}\)và a-b=15

Áp dug tính chất của dãy tỉ số = nhau

\(\frac{a}{\frac{2}{1}}=\frac{b}{\frac{3}{2}}=\frac{c}{\frac{4}{3}}=\frac{a-b}{\frac{2}{1}-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

* Do đó: \(\frac{1a}{2}=30\Leftrightarrow a=30.2=60\)

\(\frac{2b}{3}=30\Leftrightarrow2b=30.3=90\Rightarrow b=90:2=45\)

\(\frac{3c}{4}=30\Leftrightarrow3c=30.4=120\Rightarrow c=120:3=40\)

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D