Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)
hay \(x\in\left\{16;4;25;1;49\right\}\)
Oái gặp bn trùng tên nè!
a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :
\(a^2+a+3⋮a+1\)
Mà \(a+1⋮a+1\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)
\(\Rightarrow3⋮a+1\)
Vì \(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)
Ta có bảng :
\(a+1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(a\) | \(0\) | \(2\) | \(-2\) | \(-4\) |
\(Đk\) \(a\in Z\) | TM | TM | TM | TM |
Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm
b) Ta có :
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy-2y=0\)
\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)
\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)
Vì \(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)
Ta có bảng :
\(x\) | \(2x-1\) | \(1-2y\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(-1\) | \(1\) | \(0\) | TM |
\(1\) | \(1\) | \(-1\) | \(1\) | TM |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :
\(\left(0,0\right);\left(1,1\right)\)
b) \(x-2xy+y=0\)
\(\Rightarrow x-\left(2xy-y\right)=0\)
\(\Rightarrow x-y\left(2x-1\right)=0\)
\(\Rightarrow2x-2y\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Ta có:
TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy...................
\(A=\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
Để A nguyên thì a+1 là U(3) = {-3;-1;1;3}
- a + 1 = -3 => a = -4
- a + 1 = -1 => a = -2
- a + 1 = 1 => a = 0
- a + 1 = 3 => a = 2
Vậy a có 4 giá trị nguyên là: -4;-2;0;2 để A nguyên.
\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\)
Để \(\frac{a^2+a+3}{a+1}\)là số nguyên thì \(\frac{3}{a+1}\)phải là số nguyên
\(\frac{3}{a+1}\)là số nguyên khi và chỉ khi 3 chia hết cho a+1
=>a+1\(\in\)Ư(3)
=>a+1\(\in\){-3;-1;1;3}
=>a\(\in\){-4;-2;0;2}
a;b;c là số nguyên dương
=> abc>0
=> a^3>b^3=>a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2(b+c)=a^2
=>4>a
2.(b+c) là số chẵn => a^2laf số chẵn => a là sỗ chẵn => a=2
Vì a;b;c <2 =a và b;c là số nguyên dương => b=c=1
Vạy : a=2 ' b=1 ' c=1