Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
Đặt a -6 =x2
a+6 = y2 (y>x)
=> y2 - x2 = a+6 - a+6 = 12
=>(y-x)(y+x) = 12 =1.12 = 2.6 = 3.4 ( vì y+x > y-x)
+ y -x = 1 và y+x = 12 => y =13/2 loại
+ y -x =2 và y+x =6 => y =4 ; x =2 (TM) => a -6 =22 => a =10
+y -x =3 ; y+x =4 => y =7/2 loại
Vậy a =10
\(a^2+12=n^2\)
\(\Leftrightarrow n^2-a^2=12\)
\(\Leftrightarrow\left(n-a\right)\left(n+a\right)=12\)(1)
Có \(n-a+n+a=2n\)là số chẵn nên \(n-a,n+a\)cùng tính chẵn lẻ.
mà \(n-a\le n+a\)nên từ (1) suy ra
\(\hept{\begin{cases}n-a=2\\n+a=6\end{cases}}\Leftrightarrow\hept{\begin{cases}n=4\\a=2\end{cases}}\)
Vậy \(a=2\)thỏa mãn ycbt.
13a+a=14a
Vậy số chính phưong nêu ở đề bài phải chia hết cho 14 để a thuộc N.
Chia hết cho 14 tương đương với chia hết cho 7 và 2.
Mình làm đến thế thôi còn a bạn tìm theo cách này nha!
TỪ GT =>14A LÀ SỐ CHÍNH PHƯƠNG =>A=142N+1 VÌ 14A SẼ BẰNG 14.142N+1=142(N+1)=(14N+1)2LÀ SỐ CHÍNH PHƯƠNG