Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Để x3+3x2+5x+m Chia hết cho x+3
Ta cs (x3+3x2)chia hết cho x+3
để 5x+m ⋮ x+3
thì m phải = 15
vì 5x+15=5x+3.5=5(x+3)
Vì có (x+3)trong biến ->5x+m⋮ x+3
=>x3+3x2+5x+m ⋮ x+3
Bài làm trên theo cách giải của tui thấy Đ thì làm, S thì thôi; tùy bạn.
Xin hết.
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
\(\Leftrightarrow x^3-4x^2+x^2-2x+7x-14+15⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
hay \(x\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)
\(\Leftrightarrow x^3+3x^2+5x+a=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\Leftrightarrow-27+27-15+a=0\Leftrightarrow a=15\)
Đặt \(x^3+3x^2+5x+a=f\left(x\right)\)
Gọi thương của đa thức \(f\left(x\right)\) là c(x)
⇒\(x^3+3x^2+5x+a=\left(x+3\right).c\left(x\right)\)
Tại x=-3 ⇒\(f\left(x\right)=-27+27-15+a=0\)
\(=a-15=0\)
⇒\(a=15\)