K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

(x+2)2 +x(x-1)<2x2+1
x2+4x+4+x2-x<2x2+1
3x+4<1
x< -1


 

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

a: Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3+27-8x^3+2\)

=29

b: Ta có: \(B=\left(64x^3-1\right)-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-1-64x^3-12x-48x^2+9\)

\(=-12x+8\)

c: Ta có: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2+xy+y^2\right)-3\left(-2xy\right)\)

\(=2x^2+2xy+2y^2+6xy\)

\(=2x^2+8xy+2y^2\)

16 tháng 9 2021

a.x^3-1^3

b.x^3-5^3

c)(2x)^3+3^3

d)x^3+1/2^3

29 tháng 10 2020

a) ( x+ 3 ) ( x - 3 ) = 3 ( x-3)

x+ 3 =3

x =0

29 tháng 10 2020

a) x2 - 9 = 3( x - 3 )

⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0

⇔ ( x - 3 )( x + 3 - 3 ) = 0

⇔ ( x - 3 ).x = 0

⇔ x - 3 = 0 hoặc x = 0

⇔ x = 3 hoặc x = 0

b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )

⇔ 9x2 + 3 = 6 - 6x - 4

⇔ 9x2 + 6x + 3 - 6 + 4 = 0

⇔ 9x2 + 6x + 1 = 0

⇔ ( 3x + 1 )2 = 0

⇔ 3x + 1 = 0

⇔ x = -1/3

25 tháng 8 2021

\(\dfrac{A}{2x-1}=\dfrac{6x^3+3x^2}{4x^2-1}\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2}{2x-1}\Leftrightarrow A=3x^2\)

Ta có: \(\dfrac{A}{2x-1}=\dfrac{6x^3+3x^2}{4x^2-1}\)

\(\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)

\(\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2}{2x-1}\)

hay \(A=3x^2\)

1 tháng 8 2021

Áp dụng bất đẳng thức Cô - si ta có:

\(S\) \(=\) \(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)

\(S\) \(=\)  \(ab+\dfrac{1}{ab}\ge2\sqrt{1}=2\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}ab=\dfrac{1}{ab}\\a+b=1\end{matrix}\right.\)  ⇔  \(\left\{{}\begin{matrix}\left(ab\right)^2=1\\a+b=1\end{matrix}\right.\)

                                ⇔ \(a=b=0,5\)

GTNN của \(S=ab+\dfrac{1}{ab}=2\) khi \(a=b=0,5\)

 

 

1 tháng 8 2021

S=\(ab+\dfrac{1}{ab}\) 

Ta có :

Áp dụng BĐT Cauchy(cô-sy),ta có

1\(\ge a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\sqrt{ab}\le\dfrac{1}{2}\)\(\Rightarrow ab\le\dfrac{1}{4}\)

Đặt x=ab(x\(\le\dfrac{1}{4}\))

\(\Rightarrow x+\dfrac{1}{x}=x+\dfrac{1}{16x}+\dfrac{15}{16x}\)

Áp dụng BĐT Cauchy (Cô -si):

\(S\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{16x}=\dfrac{1}{2}+\dfrac{15}{16X}\ge\dfrac{1}{2}+\dfrac{16}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)

Vậy Min S=\(\dfrac{17}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=\dfrac{1}{16ab}\\ab=\dfrac{1}{4}\\\end{matrix}\right.\) \(\Leftrightarrow a=b=\dfrac{1}{2}\)