Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó.
Để xác định hằng số C ta sử dụng điều kiện F(0)=1
Từ điều kiện này và biểu thức F(x) ta có :
\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)
Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm
\(\int e^x.\cos xdx\)
= \(\int\cos xd\left(e^x\right)\)
= ex . cos x - \(\int e^xd\left(\cos x\right)\)
= ex cos x + \(\int\sin x.e^xdx\)
= ex cos x + \(\int\sin xd\left(e^x\right)\)
= ex cos x + sin x . ex - \(\int e^xd\left(\sin x\right)\)
= ex ( cos x - sin x ) - \(\int e^x.\cos xdx\)
= \(\int e^x.\cos x=\dfrac{e^x\left(\cos x+\sin x\right)}{2}\)
Vậy a = b = \(\dfrac{1}{2}\)
Chọn A.
F ' ( x ) = sin x - cos x ' sin x - cos x = cos x + sin x sin x - cos x
Chọn A
Vì là một nguyên hàm của trên khoảng
, .
Do đó
,
, .
Nên .
Bởi vậy .
Từ đó ; .
.
Lời giải:
Ta có:
\(F(x)=\int f(x)dx=\int e^x\cos xdx\)
Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \cos xdx=\sin x\end{matrix}\right.\)
Do đó:
\(F(x)=\int e^x\cos xdx=e^x\sin x-\int \sin x.e^xdx+c\) (1)
Đặt \(\left\{\begin{matrix} u=e^x\\ dv=\sin xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=e^xdx\\ v=\int \sin xdx=-cos x\end{matrix}\right.\)
\(\Rightarrow \int \sin x.e^xdx=-\cos x.e^x+\int \cos x.e^xdx+c\) (2)
Từ (1)(2) suy ra:
\(F(x)=e^x.\sin x+\cos x.e^x-\int \cos x.e^xdx+c\)
\(\Leftrightarrow F(x)=e^x\sin x+e^x\cos x-F(x)+c\)
\(\Leftrightarrow F(x)=\frac{1}{2}e^x(\sin x+\cos x)+c\)
Do đó: \(a=b=\frac{1}{2}\)