Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??
Ta chứng minh: 4a chia 6 dư 4(1)
-Với a=1=>4a =41=4 chia 6 dư 4(thỏa mãn)
Giả sử (1) luôn đúng với mọi n=k=>4k chia 6 dư 4, ta càn chứng minh (1) cũng luôn đúng với mọi n=k+1, chứng minh: : 4k+1 chia 6 dư 4
Ta có: 4k chia 6 dư 4
=>4k đồng dư với 4(mod 6)
=>4k.4 đồng dư với 4.4(mod 6)
=>4k+1 đồng dư với 16(mod 6)
=>4k+1 đồng dư với 4(mod 6)
=>4k+1 chia 6 dư 4
=>thỏa mãn
=>Phép quy nạp đã được chứng minh=>ĐPCM
=>4a chia 6 dư 4
=>4a-4 chia hết cho 6
Lại có: a+1, b+2007 chia hết cho 6
=>a+1+ b+2007 chia hết cho 6
=>a+ b+2008 chia hết cho 6
=>a+b+4+2004 chia hết cho 6
mà 2004 chia hết cho 6
=>a+ b+4 chia hết cho 6
mà 4a-4 chia hết cho 6
=>4a-4+a+b+4 chia hết cho 6
=>4a+a+b chia hết cho 6
Vậy 4a+a+b chia hết cho 6
Do a+1 và b+2007chia hết cho 6. Do đó a,b:lẻ. Thật vậy nếu a,b chẵn
\(\Rightarrow\) a+1,b+2007/chia hết cho 2
\(\Rightarrow\)a+1,b+2007/chia hết cho 6
Điều nói trên trái với giả thiết.
Vậy a,b luôn lẻ.
Do đó:41+MỘTchia hết+2.b
Ta có:một + 1,b+chia hết 2007
\(\Rightarrow\)a+1+b+2007 chia hết cho 6
\(\Rightarrow\)(một +b+1)chia hết+3.2007
\(\Rightarrow\)a+b+1chia hết cho 3.\(\leftrightarrow\)
Ta thấy41+Một+b=(41-1)+(một +b+1)
Lại có:41-1chia hết (4-1)=3\(\leftrightarrow\)(*)
Từ\(\leftrightarrow\)và(*),Suy ra:41+Một +b chia hết+3
Mặt khác(2;3)=1. Do đó: 41+Một+b chia hết cho 6