Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử 1 < a \(\le\) b không làm mất đi tính tổng quát của bài toán
=> \(\frac{1}{a}+\frac{1}{a}\ge\frac{1}{a}+\frac{1}{b}\)
=> \(\frac{2}{a}\ge\frac{1}{3}\Rightarrow6\ge a\)
=> a \(\le\)6
=> a \(\in\){2;3;4;5;6}
+) Nếu a = 2 thì \(\frac{1}{b}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\) (loại)
+) Nếu a = 3 thì \(\frac{1}{b}=\frac{1}{3}-\frac{1}{3}=0\)(loại)
+) Nếu a = 4 thì \(\frac{1}{b}=\frac{1}{3}-\frac{1}{4}=\frac{4}{12}-\frac{3}{12}=\frac{1}{12}\) => b = 12 (thỏa mãn)
+) Nếu a = 5 thì \(\frac{1}{b}=\frac{1}{3}-\frac{1}{5}=\frac{5}{15}-\frac{3}{15}=\frac{2}{15}\) => b thuộc rỗng
+) Nếu a = 6 thì \(\frac{1}{b}=\frac{1}{3}-\frac{1}{6}=\frac{2}{6}-\frac{1}{6}=\frac{1}{6}\)=> b = 6 (thỏa mãn)
Vậy (a; b) \(\in\){(4; 12); (6;6)}
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15
Tìm các bộ 3 số tự nhiên a, b, c khác 0 thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
5/a=1/6+b/3
5/a=1/6+2b/6
5/a=(1+2b)/6
a x (1+2b)=5x6=30
-->a và 1+2b thuộc ước của 30
Mà a và b là các số nguyên dương nên a và 1+2b thuộc tập hợp 1;2;3;5;6;10;15;30
Vì a và b là các số nguyên dương;a x (1+2b)=30 nên ta có bảng:
a | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
1+2b | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
b | không có giá trị của b | 7 | không có giá trị của b | không có giá trị của b | 2 | 1 | không có giá trị của b | 0 |
Kết luận | LOẠI | CHỌN | LOẠI | LOẠI | CHỌN | CHỌN | LOẠI | CHỌN |
Vậy a thuộc tập hợp 2;6;10;30
b thuộc tập hợp 7;2;1;0
Ta thấy a, b, c, d > 1 vì nếu một số bằng 1 thì tổng lớn hơn 1
Nếu trong 4 số a, b, c, d có ít nhất 1 số lớn hơn 2 thì tổng đã cho có GTLN là :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}< \frac{1}{4}\cdot4=1\)
Do đó a, b, c, d < 3
Vậy a = b = c = d = 2, ta có :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}=1\) ( đúng )
Cbht
\(\Sigma\frac{a^3+1}{b^3+c^3+1}=(\frac{-\left(a+b\right)\left(c^3+1\right)}{ab\left(a+b+c\right)\left(a^3+b^3+1\right)}+\frac{\Sigma\left(a+b\right)^2}{3\left(a+b+c\right)}+2\left(a+b+c\right)\)
\(+\frac{\frac{1}{2}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\Sigma\frac{1}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\right)}{\left(a+b+c\right)^2+3\left(a+b+c\right)+9}+\frac{\Sigma\left(a-b\right)^2}{a+b+c})\left(a-b\right)^2+2\ge2\)
justforfun:)