Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện a khác 0
a, b, c, d nguyên dương nằm trong khoảng từ 0-> 9
=> ab, cd nguyen dương
ab x cd =bbb
<=> ab x cd = 111x b
<=> cd = (111 x b)/ ab
<=> cd = (111 x b) /(10a+ b)
* với b khác 0
<=> cd= 111/( 10a/b + 1)
mà cd nguyên => 111 chia hết cho 10 a/b + 1
=> 10 a/b+ 1= 1 hoặc 10a/b +1= 111 hoac 10 a/b+ 1= 3 hoac 10 a/b+ 1= 37
**10 a/b +1 = 1 => a =0 ( loại)
** 10 a/b + 1 = 111 => a/b = 11 ( loại)
** 10 a/b+ 1= 3 => a/b = 1/5 => a=1, b=5
=> 10c + d= 37 <=> d = 37 -10 c >0
=> c= 3 <=> d = 7
=> số 1537
** 10 a/b+ 1= 37
=> a/b = 36/10 ( loại)
*** với b = 0
=> cd = 0
=> c= d= 0
vậy các sô cần tìm là
1000, 1573, 2000, 3000, 4000,5000, 6000, 7000, 8000, 9000
Có : ab x cd = b x 111 = b x 3 x 37
=> ab, cd chia hết cho 37
=> ab, cd có thể bằng 37 hoặc 74
+) Nếu ab = 37 => 37 x cd = 777 => cd = 21 ( nhận )
+) Nếu ab = 74 => 74 x cd = 444 => cd = 6 ( loại )
+) Nếu cd = 37 => ab x 37 = b x 111 => ab = b x 3
Vì b x 3 được số tận cùng là b => b = 5 => ab = 15
+) Nếu cd = 74 => ab x 74 = b x 111 => ab x 2 = b x 3
=> a x 20 = b. Không có a, b nào thỏa mãn
Vậy ab = 15; cd = 37 hoặc ab = 37; cd = 21
~ Hok tốt ~
Theo đề bài ta có:
\(\overline{aaa}+\overline{bbb}+\overline{ccc}\) \(⋮\) 6;9;54
\(\Rightarrow\overline{aaa}+\overline{bbb}+\overline{ccc}\) \(⋮\) 54
\(\Rightarrow\) ( 100a + aa ) + ( 100b + bb ) + ( 100c + cc ) \(⋮\) 54
\(\Rightarrow\) ( 100a + 100b + 100c ) + ( aa + bb + cc ) \(⋮\) 54
\(\Rightarrow\) 100(a+b+c) + ( 10a + a + 10b + b + 10c + c ) \(⋮\) 54
\(\Rightarrow\) 100(a+b+c) + ( 10a + 10b + 10c ) + ( a + b + c ) \(⋮\) 54
Tự làm tiếp nhé
\(\overline{aaa}+\overline{bbb}+\overline{ccc}\\ =\left(111a\right)+\left(111b\right)+\left(111c\right)\\ =111\left(a+b+c\right)⋮6;9;54\\ \Rightarrow a+b+c⋮6;9;54\)
abcabc=abc.1000+abc
<=>abcabc=abc.(1000+1)=abc.1001
=>a.abc.bcd=abcabc
=>a.bcd=abc.1001
Vậy A=7;B=1;C=4;D=3
CHÚC BẠN ĐẠT KẾT QUẢ TỐT !
Có ab x cd = bbb = b x 111 = b x 3 x 37
=> ab ; cd chia hết cho 37
=> ab ; cd có thể bằng 37 hoac 74
+) Nếu ab = 37 => 37 x cd = 777 => cd = 21 ( nhận )
+) Nếu ab = 74 => 74 x cd = 444 => cd = 6 ( loại )
+) Nếu cd = 37 => 37 x ab = b x 111 => ab = b x 3
Vì b x 3 được số tận cùng là b => b = 5 => ab = 15
+) Nếu cd = 74 => ab x 74 = b x 111 => ab x 2 = b x 3
=> ( 10 x a + b ) x 2 = b x 3 => a x 20 + b x 2 = b x 3
Vậy ab = 15 ; cd = 27 Hoặc
ab = 37 ; cd = 21
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị.
Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có: a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
ab x cd = ddd = d x 111 = d x 3 x 37, mà 37 là số nguyên tố
=> ab = 37 hoặc cd = 37
TH1: nếu cd = 37 thì:
ab x 37 = 777
=> ab = 21
TL: 21.37 = 777 (thỏa mãn)
TH2: nếu ab = 37 thì:
37 x cd = d x 3 x 37
=> cd = d x 3
Ta thấy : cd <= 27 (vì d <= 9 => cd <= 27)
mà c > 0 nên c = 1 hoặc c = 2
+) Nếu c = 1 => 10 + d = 3d
=> 10 = 2d
=> d = 5
TL: 37.15 = 555 (thỏa mãn)
+) Nếu c = 2 => 20 + d = 3d
=> 20 = 2d
=> d = 10 (loại vì d là chữ số)
ĐS: (a; b; c; d) ∈ {(3;7;1;5);(2;1;3;7)}