K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
Ta thấy:

$(-x^2y^3)^2\geq 0$ với mọi $x,y$

$(2y^2z^4=2(yz^2)^2\geq 0$ với mọi $y,z$

$\Rightarrow (2y^2z^4)^3\geq 0$ với mọi $y,z$
Do đó để tổng $(-x^2y^3)^2+(2y^2z^4)^3=0$ thì:

$-x^2y^3=2y^2z^4=0$

Hay $(x,y,z)=(x,0,z)$ với $x,z$ bất kỳ hoặc $(x,y,z)=(0,y,0)$ với $y$ là số bất kỳ.

31 tháng 10 2015

22+1=5 {x=2;y=2;z=5}

31 tháng 10 2015

x=2

y=2

z=5

16 tháng 3 2017

chưa học nên ko biết

NV
16 tháng 2 2022

\(11^y\equiv1\left(mod10\right)\Rightarrow11^y+29⋮10\)

\(\Rightarrow272x⋮10\Rightarrow272x⋮5\)

\(\Rightarrow x⋮5\Rightarrow x=5\) do x nguyên tố

Thay vào phương trình:

\(272.5=11^y+29\Rightarrow11^y=1331\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(5;3\right)\)

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học