Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét:
\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)
+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so
Vay p=2
b) Xét:'
\(+p=2\Rightarrow p+8=10\left(ktm\right)\)
\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)
\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)
\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)
\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)
Vay p=3
a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.
Xét p = 2 => 3.2 + 5 = 11 (nhận)
b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.
=> p = 3
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)