Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
Gọi \(ƯC\left(2x-y;x+y+1\right)=d\left(d\in N\right)\)
\(\Rightarrow2x-y⋮d,x+y+1⋮d\)
\(\Rightarrow\left(2x-y\right)\left(x+y+1\right)⋮d^2\Rightarrow x^2⋮d^2\Rightarrow x⋮d\) (1)
Mặt khác, \(2x-y+x+y+1⋮d\Rightarrow3x+1⋮d\) (2)
Từ (1) và (2) ta được: \(3x+1-3x⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 2x - y và x + y + 1 là 2 số nguyên tố cùng nhau.
Mà \(\left(2x-y\right)\left(x+y+1\right)\) là số chính phương
Nên 2x - y và x + y + 1 là 2 số chính phương.