Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số tự nhiên đã cho là a và b ( a và b là các số tự nhiên khác 0 ; a < b )
Ưóc chung lớn nhất của hai số là 12 nên ta đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\)
Suy ra : m và n là số nguyên tố cùng nhau
BCNN của hai số bằng 72 nên ta có :
\(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\Rightarrow BCNN\left(a,b\right)=12mn\)
\(\Rightarrow12mn=72\Leftrightarrow mn=6\Leftrightarrow\orbr{\hept{\begin{cases}m=1\\n=6\end{cases}}}\)
\(\orbr{\hept{\begin{cases}m=2\\n=3\end{cases}}}\)
\(\Leftrightarrow\orbr{\hept{\begin{cases}a=12\\b=72\end{cases}}}\)
\(\orbr{\hept{\begin{cases}a=24\\b=36\end{cases}}}\)
Do hai số có hàng đơn vị khác nhau nên hai số đó là 24 và 36
Gọi 2 số cần tìm là a và b ( a , b \(\inℕ^∗\); 70 > a , b )
Vì giá trị của a và b là bình đăng nên giả sử a > b
=> a - b = 48 ( vì hiệu của 2 số cần tìm là 48 )
vì ƯCLN(a;b)= { 1 ; 12 ; 24 ; 36 ; 48 ; 60 ; 72 ; ... } (1)
Mà 70 > a > b
thử với các giá trị từ 1 ta thấy :
(a;b) = { ( 68 ; 12 ); ( 12 ; 68 ) }
Vậy .....
Học tốt
#Gấu
Gọi 2 số cần tìm là a và b ta có:
UCLN(a,b) = 20
< = > a chia hết cho 20 ; b chia hết cho 20
< = > a + b chia hết cho 20
Mà 192 không chia hết cho 20
Nên không tồn tại 2 số cần tìm