Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ƯCLN(a; b)=16 => a = 16.m; b = 16.n [(m;n)=1; (m > n)]
Ta có: 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà m > n; (m;n)=1 => m = 7; n = 1 hoặc m = 5; n = 3
+ Với m = 7; n = 1 thì a = 16.7 = 112; b = 16.1 = 16
+ Với m = 5; n = 3 thì a = 16.5 = 80; b = 16.3 = 48
Vậy các cặp số (a;b) thỏa mãn đề bài là: (112;16) ; (80;48)
UCLN (a,b) - 6 nên a = 6a', b = 6b' và UCLN (a,b) = 1.
Theo đề bài a'b' = 63 =3.3.7
Do a > b nên a'>b'.' Chọn 2 số a' và b' có tích = 63, nguyên tố cùng nhau. a' > b' ta được.
a' | 63 | 9 |
b' | 1 | 7 |
Do đó.
a | 387 | 54 |
b | 6 | 42 |
Ta có: a.b = ƯCLN (a, b) . BCNN (a, b)
=> a.b = 18.630
=> a.b = 11340
Vì \(ƯCLN\left(a,b\right)=18\Rightarrow\hept{\begin{cases}a=18.m\\b=18.n\end{cases};\left(m,n\right)=1;m,n\in N,m< n}\)
Thay a = 18.m, b = 18.n vào a.b = 11340, ta có:
\(18.m.18.n=11340\)
\(\Rightarrow\left(18.18\right).\left(m.n\right)=11340\)
\(\Rightarrow324.\left(m.n\right)=11340\)
\(\Rightarrow m.n=11340\div324\)
\(\Rightarrow m.n=35\)
Vì m và n nguyên tố cùng nhau, m < n
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 5 |
n | 35 | 7 |
a | 18 | 90 |
b | 630 | 126 |
Vậy các cặp (a, b) cần tìm là:
(18; 630); (90; 126).
Ta thấy : a.b = UCLN(a,b) . BCNN(a,b) => a.b = 18*630=11340
Vì UCLN(a,b)=18 => a = 18*m
b = 18*n
Trong đó , (m,n)=1
Vì a<b nên m<n
Mà 18m . 18n = 11340
=> 324.(m.n)=11340
=> m.n= 35
Vậy (a,b)= (18,630); (90,126)
Dựa vào dữ kiện đề bài,ta có:
a=18k;b=18p.(k,p nguyên tố cùng nhau)
Tích:
a.b=18k.18p
=324.k.p=1944
=>k.p=6.
=>k bằng 3;p=2.
Vậy a=54;p=36.
Đặt a=16m , b=16n mà ƯCLN (m,n)=1 ( m, n thuộc N)
Ta có : a+b = 16m+16n=16(m+n)=128
=> m+n=128:16=8
Ta được m = 5 , n = 3 ; m = 7 , n = 1
Vậy : a = 80 , b = 48 ; a = 112 ; b = 16
Do ƯCLN ( a, b ) = 18 => a = 18a' ; b = 18b' [ a', b' thuộc N* ; ( a', b' ) = 1 ]
Khi đó:
a + b = 128
=> 18a' + 18b' = 128
=> 18 ( a' + b' ) = 128
=> a' + b' = 7,1111.... không thuộc N - loại
Vậy không có số tự nhiên a và b cần tìm.
vậy ƯCLN(a,b)=18 -> Ư(18)={1;2;3;6;9;18}