Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=45m (m thuộc N),b=45n(n thuộc N)
(m;n)=1 suy ra a+b=270;45(m+n)=270
m+n=6 Mà (m;n) =1 suy ra m+n=5+1,vậy a=45,b=225,b=45
mk nhanh nhất ****
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
Ta có : BCNN(a,b) . ƯCLN(a;b) = a.b
=> a.b = 270 . 18
=> a.b = 4860 (1)
Vì ƯCLN(a;b) = 18
=> Đặt\(\hept{\begin{cases}a=18m\\b=18n\end{cases}}\left(m;n\inℕ^∗;\text{ƯCLN(m;n)}=1\right)\)(2)
Thay (2) vào (1) ta có
=> 18m.18n = 4860
=> mn = 15
Với \(m;n\inℕ^∗\)ta có : 15 = 3.5 = 1.15
=> Lập bảng xét 4 trường hợp ta có :
m | 1 | 15 | 3 | 5 |
n | 15 | 1 | 5 | 3 |
a | 18 | 270 | 54 | 90 |
b | 270 | 18 | 90 | 54 |
Vậy các cặp số (a;b) thỏa mãn bài toán là : (18 ; 270) ; (270;18) ; (54;90) ; (90 ; 54)
Do ƯCLN(a,b)=45 nên
đặt a=45m , b=45n ( ƯCLN(m,n)=1 , m ≥ n)
Theo đề ta có
a + b =270
45m+45n=270
m+n=6
Lập bảng giá trị
m 0 1 2 3 4 5 6
n 6 5 4 3 2 1 0
L L L L L N L do ƯCLN(m,n)=1 , m ≥ n
Suy ra a=45.5=225
b=45.1=45