K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2014

vi Ư của a , b = 16 => a = 16n và b = 16m

ta có 16n + 16m = 128 <=> 16 ( n + m ) = 128

                                     <=>  n + m = 128 : 16 = 8

ta có các trường hợp : n =1 ; m =7 => a = 16 ; b = 112

                                    n = 2 ; m = 6  loại vì ( a, b )= 32

                                    n = 3 ; m = 5 => a = 48 ; b = 80

                                    n = 4 ; m = 4 ( loại )

vậy nếu a = 16 , b = 112 và ngược lại

      nếu a = 48 , b = 80  và ngược lại

21 tháng 1 2019

thiếu trường hợp 8 và 0,0 và8

28 tháng 11 2021

Vì ƯCLN ( a;b )=1\(\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\) ( m;n ∈ \(N\));(m;n)=1

Ta có : a+b=128

⇔ 16.m + 16.n = 128

⇔ 16.(m+n) = 128

⇔ m + n =128 : 16 = 8

Mà (m+n)=1⇔\(\left\{{}\begin{matrix}m=3\\n=5\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)

Các cặp giá trị (a;b)tương ứng là ( 16;11;12 ) ; (48;80 ) ; ( 112;16 ) ;(80;48 )

25 tháng 8 2016

Do ƯCLN(a; b)=16 => a = 16.m; b = 16.n [(m;n)=1; (m > n)]

Ta có: 16.m + 16.n = 128

=> 16.(m + n) = 128

=> m + n = 128 : 16 = 8

Mà m > n; (m;n)=1 => m = 7; n = 1 hoặc m = 5; n = 3

+ Với m = 7; n = 1 thì a = 16.7 = 112; b = 16.1 = 16

+ Với m = 5; n = 3 thì a = 16.5 = 80; b = 16.3 = 48

Vậy các cặp số (a;b) thỏa mãn đề bài là: (112;16) ; (80;48)

3 tháng 9 2016

UCLN (a,b) - 6 nên a = 6a', b = 6b' và UCLN (a,b) = 1.

Theo đề bài a'b' = 63 =3.3.7

Do a > b nên a'>b'.' Chọn 2 số a' và b' có tích = 63, nguyên tố cùng nhau. a' > b' ta được.

  a' 63   9
  b' 1   7

Do đó.

   a387  54
   b  6  42
10 tháng 11 2016

Vì ƯCLN(a;b)=1 \(\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases}\left(m;n\in N\right);\left(m;n\right)=1}\)

Ta có: a + b = 128

=> 16.m + 16.n = 128

=> 16.(m + n) = 128

=> m + n = 128 : 16 = 8

Mà (m;n)=1 \(\Rightarrow\hept{\begin{cases}m=1\\n=7\end{cases}}\)hoặc \(\hept{\begin{cases}m=3\\n=5\end{cases}}\) hoặc \(\hept{\begin{cases}m=7\\n=1\end{cases}}\) hoặc \(\hept{\begin{cases}m=5\\n=3\end{cases}}\)

Các cặp giá trị (a;b) tương ứng là: (16;112) ; (48;80) ; (112;16) ; (80;48)

7 tháng 11 2019

vì ƯCLN(a,b) = 16 suy ra a = 16.m, b = 16.n (m,n) = 1

ta có a+b = 128

suy ra 16m+16n = 128

suy ra 16.(m+n) = 128

suy ra m+n = 128/16=8

m          ,          n

1                      7 

3                      5

7                      1

5                      3

m 
 

                                               

  
  
  
26 tháng 11 2016

xin lỗi mình ghi nhầm chỗ đó phải là ƯCLN

26 tháng 11 2016

Ta có ƯCLN(a,b)=16 =>a=16n ; b=16m, (n>m)   =>(n,m)=1

    a+b=128 

Hay:16n+16m=128

      16(n+m)  =128

          n+m   =128:16

          n+m   =8

Vì (n,m)=1 nên ta có bảng:

  n       m        a         b

 1        7       16         112

 3        5        48         80

  Vậy (a,b)= ((16;112),(48;80))

27 tháng 1 2021

Tham khảo:

1. Câu hỏi của Nghĩa Nguyễn Trọng - Toán lớp 6 - Học trực tuyến OLM

2. Câu hỏi của nguyen thuy linh - Toán lớp 6 - Học trực tuyến OLM

5 tháng 11 2015

Đặt : a = 16x và b = 18y

Ta có : 16 ( x + y ) = 128

=> x + y = 8

=> x = 7 và y = 1

Vì a > b nên ta có a = 16x = 16.7 = 112

b = 128 - 112 = 16

Vậy ...

5 tháng 11 2015

Vì ƯCLN(a, b) = 16 => ta gọi a = 16n, b = 16m.

16n + 16m = 128

=> 16(m + n) = 128

=> n + m = 128 : 16 = 8 

 8 = 0 + 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4 

Vì a > b => n > m => n có thể bằng 8; 7; 6; 5 

m có thể bằng 0; 1; 2; 3 

Vì a > b => loại bỏ trường hợp 4 + 4 

=> (a; b) lần lượt là (128; 0) , (112; 16) ; (96; 32) ; (80; 48)