Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Vì mỗi số nguyên tố chỉ có ước là 1 và chính nó mà 79 và 97 là hai số nguyên tố khác nhau nên ƯCLN(79, 97) = 1 và BCNN (79, 97) = 79.97 = 7 663.
Bài 2:
ƯCLN (3a.52; 33.5b). BCNN = (3a.52; 33.5b) = ( 33.53).(34.53)
= (33.34).(52.53) = 33+4.52+3 = 37.55
Tích của 2 số đã cho:(3a.52).(33.5b) = ( 3a.33).(52.5b) = 3a+3.5b+2
Ta có tích của hai số bằng tích của ƯCLN và BCNN của hai số ấy nên:
37.55= 3a+3.5b+2. Do đó: a + 3 = 7 ⇒ a = 7 – 3 = 4
và b + 2 = 5 ⇒ b = 5 -2
Vậy a = 4 và b = 3.
Biết hai số 2^3 x 3^a và 2^b x 3^5 có ƯCLN là 2^2 x 3^5 và BCNN là 2^3 x 3^6 Hãy tìm giá trị của các số tự nhiện a và b
Do UCLN là \(3^3.5^2\Rightarrow\hept{\begin{cases}a\ge3\\b\ge2\end{cases}}\)
Do BCNN là \(3^4.5^3\Rightarrow\hept{\begin{cases}a=4\\b=3\end{cases}}\) vậy a=4 và b=3
dịch
Các bạn giúp mìn bài nì ha. Bạn nào giải được trong vòng 5 phút thì mìn thanks lém lém:
Tính A= 1.3^3+3.5^3+5.7^3+...+n.(n+2)^3(với n là số tự nhiên lẻ)
Trả lời:
Ta có:
\(3^a.5^2.3^3.5^b=3^3.5^2.3^4.5^3\)
\(\Rightarrow\)\(a=4;b=3\)
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên: a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
TL:
sửa :
Ta có :
\(3^a\cdot5^2\cdot3^3\cdot5^b=3^3\cdot5^2\cdot3^4\cdot5^3\)
\(\Rightarrow a=4,b=3\)
^HT^