Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\frac{5}{3}b\); \(c=\frac{5}{6}b\)
\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)
\(\Leftrightarrow\frac{-5}{6}b=10\)
\(\Leftrightarrow b=-12\)
b, Tương tự
Bài làm:
a) \(3a=5b=6c\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)
b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)
và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)
Ta có : 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)
5b = 7c => \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
+) \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
+) \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
=> \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có : \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
Từ đó suy ra a = 2.21 = 42,b = 2.14 = 28,c = 2.10 = 20
Ta có:\(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{14}=\frac{c}{10}\)
Suy ra:\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Đặt\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
\(\Rightarrow\hept{\begin{cases}a=21k\\b=14k\\c=10k\end{cases}}\)
Mà\(3a+5c-7b=30\)
\(\Rightarrow3.21k+5.10k-7.14k=30\)
\(\Leftrightarrow63k+50k-98k=30\)
\(\Leftrightarrow15k=30\)
\(\Leftrightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}a=2.21=42\\b=2.14=28\\c=2.10=20\end{cases}}\)
Vậy\(\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)
Linz
Ta có :
\(2a=\frac{a}{\frac{1}{2}};3b=\frac{b}{\frac{1}{3}};5b=\frac{b}{\frac{1}{5}};7c=\frac{c}{\frac{1}{7}}\)
Lại có \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}\\\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{7}}\end{cases}}\Rightarrow\frac{a}{\frac{3}{2}}=b=\frac{c}{\frac{5}{7}}\Leftrightarrow\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}=\frac{3a-7b+5c}{\frac{9}{2}-1+\frac{25}{7}}=\frac{-30}{\frac{99}{14}}=\frac{-140}{33}\)
\(\Rightarrow\hept{\begin{cases}3a=\frac{-140}{33}\cdot\frac{9}{2}=\frac{-210}{11}\Rightarrow a=\frac{-70}{11}\\7b=\frac{-140}{33}\Rightarrow b=\frac{-20}{33}\\5c=\frac{-140}{33}\cdot\frac{25}{7}=\frac{-500}{33}\Rightarrow c=\frac{-100}{33}\end{cases}}\)
Vậy....
Chắc sai =))
\(2a=5b\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+6b}{15+12}=\dfrac{54}{27}=2\)
\(\dfrac{a}{5}=2\Rightarrow a=10\\ \dfrac{b}{2}=2\Rightarrow b=4\)
\(\dfrac{a}{5}=\dfrac{b}{2}\) mà cj