Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi abcd là là số cần tìm .
đặt abcd=n^2=>1000a+100b+10c+d=n^2 (1)
theo đề bài ta có : ab-cd=1=>10a+b-10c-d=1 (2)
cộng (1) và (2) theo vế ta được:
1010a+101b=n^2+1
=>101(10a+b)=n^2+1
=>n^2+1 chia hết 101=>n^2-100+101 chia hết 101 => n^2-10 chia hết 101 =>(n+10)(n-10) chia hết cho 101 vì n-10 <101 ( loại ) =>n+10 chia hết 101
vì n^2 có 4 chữ số nên 32<n<100=>n=91
vậy số cần tìm là 91^2=8281.
cs j thì k nhá
Gọi số có bốn chữ số là : abcd ( 1024 \(\le\)abcd < 1000 )
Do abcd là số chính phương => abcd = \(k^2\left(k\in N\right)\)
Theo đề bài , ta có :
\(ab-cd=1\)
\(\Rightarrow100.\left(ab-cd\right)=100\)
\(\Rightarrow100ab-100cd=100\)
\(\Rightarrow100ab-100=100cd\)
\(\Rightarrow100ab+cd-100=101cd\)( Cộng hai vế với cd )
Mà \(abcd=100ab+cd=k^2\)
\(\Rightarrow k^2-100=101cd\)
\(\Rightarrow\left(k-10\right).\left(k+10\right)=101cd\)(1)
\(\Rightarrow k-10⋮10\)hoặc \(k+10⋮10\)
Do \(1024\le abcd< 1000\)
\(\Rightarrow32^2\le k^2< 100^2\)
\(\Rightarrow32\le k< 100\Rightarrow\left(k-10,101\right)=1\) (2)
Từ (1) và (2) \(\Rightarrow k+10⋮101\)(*)
Ta có : \(32\le k< 100\)
\(\Rightarrow42\le k+10< 110\)(**)
Từ (*) và (**) \(\Rightarrow k+10=101\)
\(\Rightarrow k=101-10=91\)
\(\Rightarrow k^2=91^2=8281=abcd\)
Vậy abcd = 8281
Đặt abcd = k2
Ta có : ab - cd = 1 ( k \(\in\) N ; 32 \(\le\) k < 100 )
=> 101cd = k2 - 100 = ( k - 10 )(k - 10 )
=> k + 10 chia hết cho 101 hoặc k - 10 chia hết cho 101
Mà ( k - 10 ; 101 ) = 1 => k + 10 chia hết cho 101
=> 32 \(\le\) k < 100 => 42 \(\le\) k + 10 < 110
=> k + 10 = 101
=> k = 101 - 10
=> k = 91
=> abcd = 912 = 8281
Vậy số cần tìm là 8281
Bài làm
Số chính phương có 4 chữ số biết 2 chữ số đầu lớn hơn 2 chữ số sau 1 đơn vị là số 8281
~ Chắc zậy ~
# Chúc bạn học tốt #
số chinh phương gồm 4 chữ số 7, 4, 2, 0 là: 2704: ở đây ta chỉ xét đuôi 4 vì các số chính phương không thế có đuôi là 2,3,7,8 ở đây có 1 số 0 ở cuối thì cũng ko phải số chính phương.
2/ tươn tự ta chỉ xét những số có đuôi 5. và số cần tìm là: 3025: có đuôi 5 mà là số chính phương thì 2 số cuốí phải là 25 nên chỉ có 1 số 3025 thỏa mãn
Đặt a=n^2, b=k^2 Để thay b-a=k^2-n^2=1111=101*11 =>(k-n)(k+n)=101*11 Giải hệ (k+n=101 ;k-n=11) =>k=56;n=45 a=2025;b=3136
Đặt abcd ta có ab-cd và k N, 32 bé hơn hoặc bằng k < 100
Suy ra : 101cd = k2 – 100 = (k – 10)(k + 10) =>k + 10chia hết 101 hoặc k – 10 chia hết101
Mà (k – 10; 101) = 1 => k + 10chia hết 101
Vì 32 bé hơn hoặc bằng k < 100 nên 42 bé hơn hoặc bằng k + 10 < 110 => k + 10 = 101 => k = 91
suy ra abcd= 912 = 8281
đặt k = gì ghi rõ ra đi