Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$