K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Xét Sn = 1+2+3+4+...+n               (1)

=> Sn= n+(n-1)+...+2+1               (2)

Thấy 1+n = 2+(n-1) = 3+(n-2) = n-1+2=n+1

Lấy (1);(2) và chú ý trên ta có: 

2.Sn = (n+1)+(n+1)+(n+1)+...+(n+1)=n(n+1)  (vì n số hạng giống nhau)

=> Sn= n(n+1)/2 => Sn/n = (n+1)/2

=> P= 1+ S2/2 + S3/3 + S4/4 +...+ Sn/n

P= 1+3/2+4/2+5/2+...+(n+1)/2

P= 2(2+3+4+...+n+n+1) = 2(1+2+...n+n+1) - 2 = 2.S(n+1) - 2

P= 2.(n+1)(n+2)/2 -2 = (n+1)(n+2) -2 = n2+3n

Bài toán chỉ đến S2016/2016  (tức n=2016)

Vậy S= 20162+3.2016=2016.(2016+3)=2016.2019=4070304

19 tháng 8 2016

E = 1 + 1/2.(1 + 2) + 1/3.(1 + 2 + 3) + 1/4.(1 + 2 + 3 + 4) + ... + 2016.(1 + 2 + 3 + ... + 2016)

E = 1 + 1/2.(1 + 2).2:2 + 1/3.(1 + 3).3:2 + 1/4.(1 + 4).4:2 + ... + 2016.(1 + 2016).2016:2

E = 2/2 + 3/2 + 4/2 + 5/2 + ... + 2017/2

E = 2+3+4+5+...+2017/2

E = (2 + 2017).2016/2

E = 2019.1008

E = 2 035 152

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)

11 tháng 4 2015

\(\Rightarrow2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(\Rightarrow2A-A=A=1-\left(\frac{1}{2}\right)^{2015}\)

Với B tương tự nhưng là lấy 3B

3 tháng 4 2018

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

8 tháng 6 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

14 tháng 2 2018

d,  \(\frac{1023}{2^1+2^2+...+2^{10}}\)

\(\text{Đặt}:S=2^1+2^2+...+2^{10}\)

\(2S=2.\left(2^1+2^2+..+2^{10}\right)\)

\(2S=2^2+2^3+..+2^{11}\)

\(S=2S-S=\left(2^2+2^3+...+2^{11}\right)-\left(2^1+2^2+...+2^{10}\right)\)

\(S=2^{11}-2^1=2^{11}-1\)

Thay S vào biểu thức \(\frac{1023}{2^1+2^2+...+2^{10}}\),ta được 

\(\frac{1023}{2^{11}-1}=\frac{1023}{2047}\)

Vậy ......