Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+...+\left(\dfrac{1}{2013}+1\right)+\dfrac{2014}{2014}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}{2014\left(\dfrac{1}{2}+\dfrac{1}{.3}+...+\dfrac{1}{2014}\right)}\)
\(=\dfrac{1}{2014}\)
Ta có:
A= 1+2-3-4+5+6-7-8+...-2011-2012+2013+2014
= (1+2-3-4)+(5+6-7-8)+...(2009+2010-2011-2012)+(2013+2014)
Ta thấy từ 1 đến 2012 có: \(x = {2012-1 \over 1}\)+1=2012(số)
Ta nhóm các số hạng kia trong tổng A và bớt đi tổng 2013+2014, mỗi nhóm là 4 số hạng liên tiếp
=> Có số nhóm là: 2012:4=503(nhóm)
Ta lại có:
A= (1+2-3-4)+(5+6-7-8)+...(2009+2010-2011-2012)+(2013+2014)
=(-4)+(-4)+...+(-4)+(2013+2014)
(503 số hạng -4)
=(-4).503+(2013+2014)
=(-2012)+4027
=2015
Vậy A=2015
Ta có : 1+2-3-4+5+6-7-8+...-2011-2012+2013+2014
=(1+2)+(-3-4+5+6)+(-7-8+9+10)+...+(-2011-2012+2013+2014)
=3+(4+4+...+4)(có 503 số 4)
=3+4*503
=3+2012
=2015