Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(=\sqrt{\frac{2\left(4+\sqrt{7}\right)}{2}}-\sqrt{\frac{2\left(4-\sqrt{7}\right)}{2}}\)
\(=\sqrt{\frac{8+2\sqrt{7}}{2}}-\sqrt{\frac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\frac{7+2\sqrt{7}+1}{2}}-\sqrt{\frac{7-2\sqrt{7}+1}{2}}\)
\(=\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)
\(=\frac{|\sqrt{7}+1|}{\sqrt{2}}-\frac{|\sqrt{7}-1|}{\sqrt{2}}\)
\(=\frac{\sqrt{7}+1}{\sqrt{2}}-\frac{\sqrt{7}-1}{\sqrt{2}}\)
\(=\frac{2}{\sqrt{2}}\)
\(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
\(=\frac{\sqrt{7}-5}{2}-\frac{6+2\sqrt{7}}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^2-2^2}-\frac{5\left(4-\sqrt{7}\right)}{4^2-\left(\sqrt{7}\right)^2}\)
\(=\frac{\sqrt{7}-5}{2}-\frac{6+2\sqrt{7}}{4}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{8}\)
\(=\frac{12\left(\sqrt{7}-5\right)}{24}-\frac{6\left(6+2\sqrt{7}\right)}{24}+\frac{8\left(6\sqrt{7}+12\right)}{24}-\frac{3\left(20-5\sqrt{7}\right)}{24}\)
\(=\frac{12\sqrt{7}-60-36-12\sqrt{7}+48\sqrt{7}+96-60+15\sqrt{7}}{24}\)
\(=\frac{-60+63\sqrt{7}}{24}\)
a)
\(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}-\left(\sqrt{5}-2\right)\) (vì \(2+2\sqrt{5}>0;2-\sqrt{5}< 0\) )
\(=2+\sqrt{5}-\sqrt{5}+2\\ =4\)
b)
\(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\) (vì \(\sqrt{7}-1>0;\sqrt{7}+1>0\) )
\(=\sqrt{7}-1-\sqrt{7}-1\\ =-2\)
Ta có:
\(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(\sqrt{2}A=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\sqrt{2}A=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}-1-\sqrt{7}-1=-2\)
\(\Rightarrow A=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)