K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Bài 44: (SBT/12):

a. (7.35 - 34 + 36) : 34

= (7.35 : 34) + (-34 : 34) + (36 : 34)

= 7 . 3 - 1 + 32

= 21 - 1 + 9

= 29

b. (163 - 642) : 83

= [(2.8)3 - (82)2 ] : 83

= (23 . 83 - 84) : 83

= ( 23 . 83 : 83) + (-84 : 83)

= 23 - 8

= 8 - 8

= 0

24 tháng 11 2017

a) \(\left(7.3^5-3^4+3^6\right):3^4\)

\(=7.3^5:3^4-3^4:3^4+3^6:3^4\)

\(=7.3^{5-4}-3^{4-4}+3^{6-4}\)

\(=7.3^1-3^0+3^2\)

\(=7.3-1+9\)

\(=21-1+9\)

\(=20+9\)

\(=29\)

b) \(\left(16^3-64^2\right):8^3\)

\(=\left[\left(2^4\right)^3-\left(2^6\right)^2\right]:\left(2^3\right)^3\)

\(=\left(2^{4.3}-2^{6.3}\right):2^{3.3}\)

\(=\left(2^{12}-2^{12}\right):2^9\)

\(=2^{12-9}-2^{12-9}\)

\(=2^3-2^3\)

\(=8-8\)

\(=0\)

24 tháng 6 2017

1)(7.243-81+729):81=29

2)(4096-4096):64=0

3)(9x^2.3x^2y++36y^2):3y=3x^2y+12y

24 tháng 6 2017

Cần lắm những tấm lòng nhân ái :((

a: Ta có: \(\left(8\cdot5^7+5^6-5^5\right):5^5\)

\(=8\cdot5^2+5-1\)

\(=200+4=204\)

b: Ta có: \(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)

\(=3^{60}:3^{57}-3^{57}:3^{57}+5^{27}:5^{24}-5^{24}:5^{24}\)

\(=27-1+125-1\)

=150

31 tháng 8 2021

a. (8,57 - 55 + 56) : 55

= (8,57 : 55) - (55 : 55) + (56 : 55)

= 1,72 - 1 + 5

= 2,89 - 1 + 5

= 6,89

b. (930 - 2719) : 357 + (1259 - 2512) : 524

= (930 : 357) - (2719 : 357) + (1259 : 524) - (2512 : 524)

= 33 - 1 + 125 - 1

= 27 - 1 + 125 - 1

= 150

c. (1012 + 511 . 29 - 513 - 28) : 4 . 55 . 106

= (1012 + 2,5 , 1010 - 513 - 28) : 1,25 . 1010

= (1012 : 1,25 . 1010) + (2,5 . 1010 : 1,25 . 1010) - (513 : 1,25 . 1010) - (28 : 1,25 . 1010)

= 80 + 2 - \(\dfrac{25}{256}\) - \(\dfrac{1}{48828125}\)

= 81,90234373 \(\approx\) 82

 

28 tháng 12 2021

\(a,\left(x-2\right)\left(x+3\right)-x\left(x-5\right)=x^2-2x+3x-6-x^2+5x=6x-6\)

\(b,\dfrac{1}{x-2}+\dfrac{-2}{x+2}+\dfrac{2x-8}{x^2-4}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}+\dfrac{2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2-2x+4+2x-8}{\left(x+2\right)\left(x-2\right)}=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)

19 tháng 7 2017

a, = 29

b, = 0

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

a.

$(2x-3)^2+(2x+3)(5-2x)=(4x^2-12x+9)-(-4x^2+4x+15)$

$=4x^2-12x+9+4x^2-4x-15$

$=24-8x$
b.

$3(2x-3)+5(x+2)=6x-9+5x+10=11x+1$

c.

$3x(2x-8)+(6x-2)(5-x)=(6x^2-24x)+(-6x^2+32x-10)$

$=6x^2-24x-6x^2-32x+10$

$=8x-10$

d.

$(x-3)(x+3)-(x-5)^2=(x^2-9)-(x^2-10x+25)$

$=x^2-9-x^2+10x-25=10x-34$

e.

$(x-y)^3-(x-y)(x^2+xy+y^2)=(x^3-3x^2y+3xy^2-y^3)-(x^3-y^3)$

$=-3x^2y+3xy^2=3xy(y-x)$

a: ta có: \(\left(2x-3\right)^2+\left(2x+3\right)\left(5-2x\right)\)

\(=4x^2-12x+9+2x-4x^2+15-6x\)

\(=-16x+24\)

b: Ta có: \(3\left(2x-3\right)+5\left(x+2\right)\)

\(=6x-9+5x+10\)

\(=11x+1\)

c: ta có: \(3x\left(2x-8\right)+\left(6x-2\right)\left(5-x\right)\)

\(=6x^2-24x+30x-6x^2-10+2x\)

\(=8x-10\)

a: \(=\dfrac{x^2-5x+x+4}{x\left(x-2\right)}=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{x-2}{x}\)

b: \(=\dfrac{x^2-6x+9+4x^2+8x-4x^2-8x}{\left(x-3\right)\left(x+2\right)}\)

\(=\dfrac{x-3}{x+2}\)

1 tháng 11 2021

a) \(=\dfrac{x\left(x-5\right)+x+4}{x\left(x-2\right)}=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)

b) \(=\dfrac{\left(x-3\right)^2+4x\left(x+2\right)-8x-4x^2}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2-6x+9+4x^2+8x-8x-4x^2}{\left(x+2\right)\left(x-3\right)}\)

\(=\dfrac{x^2-6x+9}{\left(x+2\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+2\right)\left(x-3\right)}=\dfrac{x-3}{x+2}\)

9 tháng 9 2021

a)\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)

b) \(x\left(3x-18\right)-3\left(x-4\right)\left(x-2\right)+8=3x^2-18x-3x^2+18x-24+8=-16\)

22 tháng 11 2021

\(a,=\left(x^3+3x^2-x^2-3x+x+3\right):\left(x+3\right)\\ =\left(x+3\right)\left(x^2-x+1\right):\left(x+3\right)\\ =x^2-x+1\\ b,=\left(x^3+2x^2-x^2-2x+3x+6\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-x+3\right):\left(x+2\right)\\ =x^2-x+3\)