Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:B=1\(\dfrac{6}{41}\)( \(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\) )
B=\(\dfrac{47}{41}\) [\(\dfrac{12\left(1+\dfrac{1}{19}-\dfrac{1}{37}-\dfrac{1}{53}\right)}{3\left(1+\dfrac{1}{3}-\dfrac{1}{37}-\dfrac{1}{53}\right)}:\dfrac{4\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}\) B = \(\dfrac{47}{41}\) [ \(\dfrac{12}{3}:\dfrac{4}{5}\)]
B = \(\dfrac{47}{41}\)[ 4 . \(\dfrac{5}{4}\)]
B = \(\dfrac{47}{41}.5\)
B = \(\dfrac{235}{41}\)
Chúc bn hc tốt!!!
\(A=\dfrac{636363\cdot37-373737\cdot63}{1+2+3+...+2006}\)
\(=\dfrac{37^2\cdot3^3\cdot7^2\cdot13-37^2\cdot3^3\cdot7^2\cdot13}{\left(2006+1\right)\cdot1003}\)
=0
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(=\dfrac{-6}{5}.\dfrac{4\left(3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}\right)}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}}:\dfrac{4\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}\)
\(=\dfrac{-6}{5}.4:\dfrac{4}{5}\)
\(=\dfrac{-6.4.5}{5.4}=-6\)
1: \(\dfrac{1}{2}+\dfrac{9}{10}+\dfrac{5}{6}-\dfrac{11}{14}-\dfrac{1}{3}+\dfrac{-4}{35}\)
\(=\left(\dfrac{1}{2}+\dfrac{5}{6}-\dfrac{1}{3}\right)+\dfrac{9}{10}-\left(\dfrac{11}{14}+\dfrac{4}{35}\right)\)
\(=\dfrac{3+5-2}{6}+\dfrac{9}{10}-\dfrac{55+8}{70}\)
\(=1+\dfrac{9}{10}-\dfrac{9}{10}\)
=1
a: \(=\dfrac{37}{4}+\dfrac{117}{16}+\dfrac{1}{4}=\dfrac{19}{2}+\dfrac{117}{16}=\dfrac{269}{16}\)
b: \(=1+\left(\dfrac{9}{10}+\dfrac{8}{10}\right):\dfrac{19}{6}=1+\dfrac{17}{10}\cdot\dfrac{6}{19}=\dfrac{146}{95}\)
c: \(=\dfrac{1}{4}-\dfrac{6}{4}+\dfrac{6}{5}=\dfrac{-5}{4}+\dfrac{6}{5}=\dfrac{-1}{20}\)
tìm 1 cái bằng 0