Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\left(2x-3\right)^2}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)
\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)
\(\Leftrightarrow5\sqrt{x+2}=20\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
a. \(\sqrt{\left(2x-3\right)^2}=7\)
<=> \(\left|2x-3\right|=7\)
<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\) ĐK: \(x\ge-2\)
<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)
<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)
<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)
<=> \(5\sqrt{x+2}=20\)
<=> \(\sqrt{x+2}=4\)
<=> \(\left(\sqrt{x+2}\right)^2=4^2\)
<=> \(\left|x+2\right|=16\)
<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\) ĐK: \(x\ge3\)
<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)
<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)
\(=5\sqrt{2}-9\sqrt{5}-6\sqrt{2}+10\sqrt{5}=\sqrt{5}-\sqrt{2}\)
\(a,=\sqrt{5}\left(2\sqrt{5}-3\right)+3\sqrt{5}=10-3\sqrt{5}+3\sqrt{5}=10\\ b,=5-\sqrt{3}-\left(2-\sqrt{3}\right)=3\\ c,=\dfrac{2\left(\sqrt{5}-1\right)}{4}-\dfrac{2\left(3+\sqrt{5}\right)}{4}=\dfrac{2\sqrt{5}-2-6-2\sqrt{5}}{4}=\dfrac{-8}{4}=-2\)
\((3\sqrt{20}-2\sqrt{80}+\frac{2}{3}\sqrt{45}-\sqrt{5}):\sqrt{5}\)
\(=\left(3\sqrt{2^2.5}-2\sqrt{4^2.5}+\frac{2}{3}\sqrt{3^2.5}-\sqrt{5}\right):\sqrt{5}\)
\(=\left(3.2\sqrt{5}-2.4\sqrt{5}+\frac{2}{3}.3\sqrt{5}\right):\sqrt{5}\)
\(=\left(6\sqrt{5}-8\sqrt{5}+2\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)
\(=-\sqrt{5}:\sqrt{5}=-1\)
\(\left(\frac{2+\sqrt{5}}{2-\sqrt{5}}-\frac{2-\sqrt{5}}{2+\sqrt{5}}\right).\frac{5-\sqrt{5}}{1-\sqrt{5}}\)
\(=\left(\frac{\left(2+\sqrt{5}\right)^2}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}-\frac{\left(2-\sqrt{5}\right)^2}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\right).\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\)
\(=\left(\frac{4+4\sqrt{5}+5-\left(4-4\sqrt{5}+5\right)}{4-5}\right).\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\)
\(=\frac{9+4\sqrt{5}-9+4\sqrt{5}}{-1}.\left(-\sqrt{5}\right)\)
\(-8\sqrt{5}.\left(-\sqrt{5}\right)=40\)
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\sqrt{25.\frac{1}{5}}+\sqrt{\frac{1}{4}.20}+\sqrt{5}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}\)
\(=3\sqrt{5}\)
b) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=\sqrt{4.5}-\sqrt{5.9}+3\sqrt{18}+\sqrt{8.9}\)
\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+3\sqrt{8}\)
\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+3\sqrt{8}\)
\(=-\sqrt{5}+3.\left(\sqrt{18}+\sqrt{8}\right)\) (Tới đây không biết làm gì nữa)