Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5x+2}{x^2-4}+\dfrac{x-5}{x-2}=\dfrac{5x+2+x^2-3x-10}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+2x-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+4}{x+2}\\ \left(x+4\right)^2-\left(x+3\right)\left(x-2\right)=-13\\ \Leftrightarrow x^2+8x+16-x^2+x+6=-13\\ \Leftrightarrow9x=-13-22=-35\\ \Leftrightarrow x=-\dfrac{35}{9}\)
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
a: \(=\dfrac{3x+6-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+10}{x^2-4}\)
b: \(=\dfrac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{\left(9+x^2-3x\right)\left(x+3\right)3x}{x\left(x-3\right)\left(x+3\right)\left(3x-9-x^2\right)}\)
\(=\frac{-3}{x-3}\)
cau hoi nay de lam ma
\(\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{x^2-9}\)
ĐKXĐ : \(x\ne\pm3\)
\(=\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}+\frac{5x-15}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12+5x-15-13+9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{9x^2+9x-16}{\left(x+3\right)\left(x-3\right)}=\frac{9x^2+9x-16}{x^2-9}\)