K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(8+2.4\right)\left(5.25:7\right):\left\{\left[\dfrac{15}{7}+\dfrac{5}{7}\right]:\left[4:\dfrac{8}{9}\right]\right\}\)

\(=10.4\cdot\dfrac{3}{4}:\left\{\dfrac{20}{7}:\dfrac{9}{2}\right\}\)

\(=7.8:\dfrac{40}{63}=12.285\)

9 tháng 1 2018

\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]\right\}:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\)\(=\left\{\left[\left(2.2\right)^2:2,4\right]\left[5,25:\left(7\right)^2\right]\right\}:\left\{\left[\dfrac{15}{7}:\dfrac{\left(5\right)^2}{7}\right]\right\}:\left[4:\dfrac{\left(2.2\right)^2}{9}\right]\)

\(=\left\{\left[\left(4\right)^2:2,4\right]\left[5,25:49\right]\right\}:\left\{\left[\dfrac{15}{7}:\dfrac{25}{7}\right]\right\}:\left[4:\dfrac{\left(4\right)^2}{9}\right]\)

\(=\left\{\left[16:2,4\right].\dfrac{3}{28}\right\}:\left\{\dfrac{3}{5}\right\}:\left[4:\dfrac{8}{9}\right]\)

\(=\left\{\dfrac{20}{3}.\dfrac{3}{28}\right\}:\dfrac{3}{5}:\dfrac{9}{2}\)

\(=\dfrac{5}{7}:\dfrac{3}{5}:\dfrac{9}{2}\)

\(=\dfrac{5}{7}.\dfrac{5}{3}:\dfrac{9}{2}\)

\(=\dfrac{25}{21}:\dfrac{9}{2}\)

\(=\dfrac{25}{21}.\dfrac{2}{9}\)

\(=\dfrac{25.2}{21.9}\)

\(=\dfrac{50}{189}.\)

Mình làm chi tiết rồi nha bạn :))

27 tháng 1 2019

\(\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2\)

\(=\left[\left(\frac{2}{5}\right)^3\right]^2.\left(\frac{25}{4}\right)^2\)

\(=\left[\left(\frac{2}{5}\right)^3.\frac{25}{4}\right]^2\)

\(=\left[\frac{8}{125}.\frac{25}{4}\right]^2\)

\(=\left(\frac{2}{5}\right)^2\)

\(=\frac{4}{25}\)

27 tháng 1 2019

\(15\frac{1}{5}:\left(\frac{-5}{7}\right)-25\frac{1}{5}.\left(\frac{-7}{5}\right)\)

\(=15\frac{1}{5}.\frac{-7}{5}-25\frac{1}{5}.\frac{-7}{5}\)

\(=\frac{-7}{5}\left(15\frac{1}{5}-25\frac{1}{5}\right)\)

\(=\frac{-7}{5}.\left(-10\right)\)

\(=14\)

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi