K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Ta có :\(b\left(x\right)=-4x^3-2x^2-2+2x.\left(3+x\right)-9x+2x^3\)

                      \(=-4x^3-2x^2-2+6x+2x^2-9x+2x^3\)

                      \(=\left(-4x^3+2x^3\right)+\left(2x^2-2x^2\right)+\left(6x-9x\right)-2\)

                      \(=-2x^3-3x-2\)

                      \(=-\left(2x^3+3x+2\right)\)

22 tháng 2 2020
B(x)=(-4x^3+2x^3)-2x^2-2+6x+2x^2 B(x)=-2x^3+(6x - 9x)-2 B(x)=-2x^3- 3x - 2

a: A(x)=3x^3+3x-1

B(x)=-2x^3+x^2+4x-3

b: A(x)+B(x)

=3x^3+3x-1-2x^3+x^2+4x-3

=x^3+x^2+7x-4

B(x)-A(x)

=-2x^3+x^2+4x-3-3x^3-3x+1

=-5x^3+x^2+x-2

c; M(x)=x^3+x^2+7x-4

M(-3)=-27+9-21-4=-31-21+9=-43

22 tháng 2 2020

viết lại đề nha bạn

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

`a,`

`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`

`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`

`P(x)=x^4+5x^3-x^2-x+1`

`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`

`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`

`Q(x)=x^4+2x^3-2x^2-3x+2`

`b,`

`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`

`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`

`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`

`P(x)-Q(x)=3x^3+x^2+2x-1`

*Đa thức \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)

Ta có: \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)

\(=-2x^3-2x^2-2+6x+2x^2-9x\)

\(=-2x^3-3x-2\)

*Đa thức \(C=x^3-2x\left(3x-1\right)+4\)

Ta có: \(C=x^3-2x\left(3x-1\right)+4\)

\(=x^3-6x^2+2x+4\)

1 tháng 5 2023

F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)

F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)

F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7

G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12

G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12

G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12

b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)

F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12

F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)

F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5