K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

M=\(6x^3-3xy^2+3+4x^3+12xy^2+7\)

=\(\left(6x^3+4x^3\right)-\left(3xy^2-12xy^2\right)+3+7\)

=\(10x^3+9xy^2+10\)

1 tháng 6 2018

Thay x=-2,y=1/2 vào M:

\(10\cdot\left(-2\right)^3+9\cdot-2\cdot\left(\dfrac{1}{2}\right)^2+10\)

=10*-8+-18*1/4+10

=-80+-4.5+10

=-74.5

12 tháng 4 2022

a.\(x=0;y=-1\)

\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)

b.\(x=2\)

\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)

\(x=-3\)

\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)

c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)

\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)

12 tháng 4 2022

thay x=2 và biểu thức A ta đc

\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)

thay x=-3  biểu thức A ta đc

\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)

 

thay x=-1/5 ; y=-3/7  biểu thức B ta đc

\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)

\(B=5\cdot\dfrac{1}{25}+3+6\)

\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)

 

5 tháng 4 2019

=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y

=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y

=11/2x^2+0-15x^3y^2+5/3y

=11/2x^2-15x^3y^2+5/3y

thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc

       11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6

   vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6

28 tháng 3 2018

tách sai rồi bạn ơi

phải là

\(=\dfrac{1}{2}x^2y.\left(-4\right)x^2y^4+3x^2y^4.x^2y^2\)

=\(2x^4y^5+3x^4y^5\)

=\(5x^4y^5\)

28 tháng 3 2018

\(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+2x^2y^3.\left(x^2y^2\right)\)

\(=\dfrac{1}{2}x^2y.\left(-2\right)x^2y^4+2x^4y^5\)

\(=\left(-1\right)x^4.y^5+2x^4y^5\)

\(=x^4y^5\)

Lại có : \(\left(x-2\right)^{18}+\left|y+1\right|=0\)

\(\left\{{}\begin{matrix}\left(x-2\right)^{18}\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{18}=0\\\left|y+1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(A=x^4y^5\)

\(\Leftrightarrow A=2^4.\left(-1\right)^5\)

\(\Leftrightarrow A=-16\)

6 tháng 4 2018

a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)

\(\Rightarrow\) đa thức bậc 4

b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)

\(=-3x^2y-x^2y-6x^2y\)

\(=-10x^2y\)

Thay \(x=1;y=-1\) vào đa thức ta có:

\(-10x^2y=-10.1^2.\left(-1\right)=10\)

4 tháng 7 2018

\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)

\(=2x^2-10xy+8y-2x^2-14xy\)

\(=10xy+8y-14xy\)

\(=-4xy+8y\)

\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)

\(=-4.\frac{-1}{2}+6\)

\(=2+6=8\)

4 tháng 7 2018

\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)

\(=-2y-2xy\)

thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có

\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)

nếu có sai bn thông cảm

a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)

Bậc là 2

b: Thay x=0,1 và y=-2 vào A, ta được:

\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)

27 tháng 2 2022

\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)

Bậc: 2

b, Thay x=0,1 và y=-2 vào A ta có:

\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)

17 tháng 3 2019

a) \(B=-\frac{1}{2}x^3y\left(-2xy^2\right)^2\)

\(B=\left(-\frac{1}{2}.-2\right).\left(x^3.x\right)\left(y.y^2\right)^2\)

\(B=1x^4y^5\)

Hệ số: 1

Bậc: 9

Chưa định hình phần b) nó là như nào