Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+1\right)^2+\left(x-1\right)^2-2\left(1+x\right)\left(1-x\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x+1+x-1\right)^2\)
\(=4x^2\)
c: Ta có: \(3\left(x+2\right)^2-\left(3x+1\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=3x^2+12x+12-3x^2-16x-5+x^2+10x+25\)
\(=x^2+6x+32\)
1.
PT \(\Leftrightarrow (x+2)(x-3)(x-4)(x+6)=16x^2\)
\(\Leftrightarrow [(x+2)(x+6)][(x-3)(x-4)]=16x^2\)
\(\Leftrightarrow (x^2+8x+12)(x^2-7x+12)=16x^2\)
\(\Leftrightarrow (a+8x)(a-7x)=16x^2\) (đặt \(x^2+12=a\) )
\(\Leftrightarrow a^2+ax-72x^2=0\)
\(\Leftrightarrow (a-8x)(a+9x)=0\Rightarrow \left[\begin{matrix} a-8x=0\\ a+9x=0\end{matrix}\right.\)
Nếu \(a-8x=0\Leftrightarrow x^2+12-8x=0\Leftrightarrow (x-2)(x-6)=0\Rightarrow \left[\begin{matrix} x=2\\ x=6\end{matrix}\right.\)
Nếu \(a+9x=0\Leftrightarrow x^2+12+9x=0\Leftrightarrow x=\frac{-9\pm \sqrt{33}}{2}\)
Vậy...........
2.
PT \(\Leftrightarrow [(4x+7)(2x+1)][(4x+5)(x+1)]=9\)
\(\Leftrightarrow (8x^2+18x+7)(4x^2+9x+5)=9\)
\(\Leftrightarrow (2a+7)(a+5)=9\) (đặt \(a=4x^2+9x\) )
\(\Leftrightarrow 2a^2+17a+26=0\)
\(\Leftrightarrow (a+2)(2a+13)=0 \)\(\Rightarrow \left[\begin{matrix} a+2=0\\ 2a+13=0\end{matrix}\right.\)
Nếu \(a+2=0\Leftrightarrow 4x^2+9x+2=0\Leftrightarrow (4x+1)(x+2)=0\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{4}\\ x=-2\end{matrix}\right.\)
Nếu \(2a+13=0\Leftrightarrow 8x^2+18x+13=0\) (pt này dễ thấy vô nghiệm)
Vậy.........
a) (x+2)2+x(x-4)
=x2+4x+4+x2-4x
=2x2+4
b)(x-3)2-(x+3)(x-4)
=x2-6x+9-x2+4x-3x+12
=-5x+12
c) (3x+1)2+3x(2-4x)
=9x2+6x+1+6x-12x2
=-3x2+12x+1
d) (2x-4y)2-(2x-3)(2x-3y)
=4x2-16xy+16y2-4x2+6xy+6x-9y
=16y2-10xy+6x-9y
Bài 1:
a.
$=(x^3+2^3)-(x^3-2)=2^3+2=10$
b.
$=(x^2+10x+25)-4x(4x^2+12x+9)-(2x-1)(x^2-9)$
$=x^2+10x+25-16x^3-48x^2-36x-(2x^3-18x-x^2+9)$
$=-18x^3-46x^2-8x+16$
2.
a.
$301^2=(300+1)^2=300^2+2.300+1=90000+600+1$
$=90601$
b.
$198^2=(200-2)^2=4(100-1)^2=4(100^2-2.100+1)$
$=4(10000-200+1)=4.9801=39204$
c.
$93.107=(100-7)(100+7)=100^2-7^2$
$=10000-49=9951$
d.
$127^2+146.127+73^2$
$=127^2+2.73.127+73^2$
$=(127+73)^2=200^2=40000$