Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow x\left(1-2y\right)=5.8\)
\(\Leftrightarrow x\left(1-2y\right)=40\)
=> x và 1 - 2y là ước của 40
=> Ư(40) = \(\left\{\pm1;\pm2;\pm4;\pm8;\pm10;\pm20;\pm40\right\}\)
Vì 1 - 2y là số nguyên lẻ => 1 - 2y = \(\left\{\pm1\right\}\)
+) Với 1 - 2y = 1 thì x = 40 => x = 40 thì y = 0 (TM)
+) Với 1 - 2y = - 1 thì x = - 40 => x = - 40 thì y = 1 (TM)
Vậy x = 40 thì y = 0 ; x = - 40 thì y = 1
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{y}{15}=\frac{x}{6}=\frac{z}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}y=15k\\x=6k\end{matrix}\right.\Rightarrow xy=15k\cdot6k\Rightarrow90k^2=90\Rightarrow k^2=1\)
Because x,y,z are positive
\(\Rightarrow k=\sqrt{1}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{6}=1\rightarrow x=6\\\frac{y}{15}=1\rightarrow y=15\\\frac{z}{4}=1\rightarrow z=4\end{matrix}\right.\)
\(\Rightarrow x+y+z=6+15+4=25\)
Sửa đề:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)
Dựa vào t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(2y=x+z+1\)
\(3y=\dfrac{1}{2}+1\)
\(y=\dfrac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1\)
\(\Rightarrow3y=\dfrac{1}{2}+1\)
\(\Rightarrow y=\dfrac{1}{2}\)
Vậy...
Dịch: Tìm số nguyên tố p sao cho tồn tại số nguyên dương a; b sao cho \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\)
Vì \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) => (a2 + b2).p = a2.b2 (*) => a2b2 chia hết cho p => a2 chia hết cho p hoặc b2 chia hết cho p
+) Nếu a2 chia hết cho p ; p là số nguyên tố => a chia hết cho p => a2 chia hết cho p2 => a2 = k.p2 ( k nguyên dương)
Thay vào (*) ta được (a2 + b2) . p = k.p2.b2 => a2 + b2 = kp.b2 => a2 + b2 chia hết cho p => b2 chia hết cho p
=> b chia hết cho p
+) Khi đó, đặt a = m.p; b = n.p . thay vào \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}\) ta được: \(\frac{1}{p}=\frac{1}{m^2p^2}+\frac{1}{n^2p^2}\)
=> \(\frac{1}{p}=\frac{1}{p^2}\left(\frac{1}{m^2}+\frac{1}{n^2}\right)\)=> \(\frac{1}{m^2}+\frac{1}{n^2}=p\)
+) Vì p là số nguyên tố nên p > 2 . mà a; b nguyên dương nên m; n nguyên dương => m; n > 1 => \(\frac{1}{m^2}+\frac{1}{n^2}\le1+1=2\)
=> p = 2 và \(\frac{1}{m^2}+\frac{1}{n^2}=2\) => m = n = 1
Vậy p = 2 và a = b = 2