Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-y^2=2=(x-y).(x+y)
ta co bang
x-y 1 2 -1 -2
y+x 2 1 -2 -1
x 1.5 -1.5
y 0.5 -0.5
Mình làm vầy thôi chứ không chắc chắn đúng hay sai đâu nha.
x^2 - x + 31 = x^2 - 2.x.1/2 + (1/2)^2 + 123/4
= (x - 1/2)^2 + 123/4
Vì (x - 1/2)^2 lớn hơn hoặc bằng 0 nên để biểu thức có giá trị nhỏ nhất thì (x - 1/2)^2 phải bằng 0
Vày biểu thức có giá trị nhỏ nhất bằng: 123/4 khi x=1/2
GTNN của A = x2 - x + 31
=> A = x2 - x + 31 = x ( x - 1 ) + 31
=> Min A = 31 khi :
x ( x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
=> GTNN A = 31
x4 - mx2 + 9 = (x2 -1)2
vây m =6 thì x4 -6x2 +9 chia hết cho x2 - 1
( ngâniq106)
Ta có
\(1-\frac{2x}{2x+y}=1-\frac{2xy}{2xy+y^2}=\frac{y^2}{2xy+y^2}\left(1\right)\)
Ta lại có
\(\frac{y^2}{2xy+y^2}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1-\frac{2x}{2x+y}+\frac{2xy+y^2}{\left(x+y+z\right)^2}\ge\frac{2y}{x+y+z}\left(3\right)\)
Tương tự
\(1-\frac{2y}{2y+z}+\frac{2yz+z^2}{\left(x+y+z\right)^2}\ge\frac{2z}{\left(x+y+z\right)}\left(4\right)\)
\(1-\frac{2z}{2z+x}+\frac{2xz+x^2}{\left(x+y+z\right)^2}\ge\frac{2x}{x+y+z}\left(5\right)\)
Lấy (3) + (4) + (5) vế theo vế ta được
\(3-2M+\frac{2\left(xy+yz+zx\right)+x^2+y^2+z^2}{\left(x+y+z\right)^2}\ge\frac{2\left(x+y+z\right)}{x+y+z}\)
\(\Leftrightarrow3-2M+1\ge2\)
\(\Leftrightarrow M\le1\)
Dấu = xảy ra khi \(x=y=z\)