Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{98x99}+\frac{1}{99x100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\left(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}\right)\cdot X=\frac{11}{6}\)
\(< =>\left(\frac{1}{2}-\frac{1}{12}-\frac{1}{60}\right)\cdot X=\frac{11}{6}\)
\(< =>\left(\frac{30}{60}-\frac{5}{60}-\frac{1}{60}\right)\cdot X=\frac{11}{6}\)
\(< =>\left(\frac{30-5-1}{60}\right)\cdot X=\frac{11}{6}\)
\(< =>\frac{2}{5}\cdot X=\frac{11}{6}\)
\(< =>X=\frac{11}{6}:\frac{2}{5}\)
\(< =>X=\frac{55}{12}\)
CHUC BAN HOC TOT >.<
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{47}{42}\)
\(x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)=\frac{47}{42}\)
\(x+A=\frac{47}{42}\)
ta thấy :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=\frac{1}{1}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
vậy \(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{47}{42}\)
hay \(x+\frac{5}{6}=\frac{47}{42}\)
\(x=\frac{47}{42}-\frac{5}{6}\)
\(x=\frac{2}{7}\)
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}=\frac{47}{42}\)
\(x=\frac{47}{42}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
\(x=\frac{47}{42}-\frac{5}{6}\)
\(x=\frac{2}{7}.\)
\(\Rightarrow A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{7}\)
\(\Rightarrow A=\frac{6}{7}\)
nhớ tick nha!!!!!!!!!!!!!
A = 1/1*2 +1/2*3 +1/3*4 +1/4*5+ 1/5*6 +1/6*7
A = 1/1 - 1/2 +1/2 -1/3 +1/3 -1/4 +1/4 -1/5 +1/5 -1/6 +1/6 -1/7
A = 1 - 1/7
A= 6/7
Đặt A = \(1\frac{1}{6}+1\frac{1}{12}+1\frac{1}{20}+1\frac{1}{30}+...+1\frac{1}{9900}\)
=> A = \(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+...+1+\frac{1}{9900}\)
=> A = \(\left(1+1+1+1+...+1\right)+\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\right)\)
=> A = \(\left(1+1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\right)\)
=> A = \(99+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
=> A = \(99+\left(\frac{1}{2}-\frac{1}{100}\right)\)
=> A = \(99+\frac{49}{100}\)
=> A = \(\frac{9949}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
1/2+1/6+1/12+1/20+1/30+1/42
=1/1×2+1/2×3+1/3×4+1/4×5+1/5×6+1/6×7
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7.
Tích mk nha
A = 1/1x2 +1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + .... + 1/y x n = 39/40
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/y - 1/n = 39/40
A = 1 - 1/n = 39/40
A = 1 - 39/40 = 1/n
A = 1/40 = 1/n
=> n = 40
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n}\) = \(\frac{39}{40}\)
= \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{ax\left(a+1\right)}=\frac{39}{40}\) ( có : n = a x ( a+1) )
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{39}{40}\)
=\(\frac{1}{1}-\frac{1}{a+1}=\frac{39}{40}\)
( ta triệt tiêu tất cả các phân số ở giữa ) VD: trừ 1/2 rồi lại cộng 1/2 thì còn lại 0
\(\frac{1}{a+1}=\frac{1}{1}-\frac{39}{40}\)
\(\frac{1}{a+1}=\frac{1}{40}\)
a+1 = 40
a = 40 - 1
a = 39
vì a x (a+1) = n
nên 39 x 40 = n
n = 1560
\(ĐS:1560\)
CHÚC BẠN HỌC GIỎI
T là 99/100 . Đúng 100% luôn nhé .