Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
vô nghiệm nhé bạn
vì x thuộc N nên 5x chỉ có các giá trị là 0;5;10;15;20;25
thế từng trường hợp vào 5x+12y=26 thì không có trường hợp nào cho giá trị y là số tự nhiên nhé
vô nghiệm nhé bạn
vì x thuộc R nên 5x nhận 1 trong các giá trị 0;5;10;15;20;25
thế từng trường hợp vào 5x+12y=26 thì không có trường hợp nào cho giá trị y là số tự nhiên nhé
a)Vì ƯCLN(x;y) = 5
=> \(\hept{\begin{cases}x=5k\\y=5t\end{cases}\left(k;t\inℕ^∗\right)}\)
Lại có : x + y = 12
<=> 5k + 5t = 12
=> 5(k + t) = 12
=> k + t = 2,4
mà \(k;t\inℕ^∗\)
=> \(k;t\in\varnothing\)
=> x ; y \(\in\varnothing\)
b) Vì ƯCLN(x;y) = 8
=> \(\hept{\begin{cases}x=8k\\y=8t\end{cases}\left(k;t\inℕ^∗\right)}\)
Lại có x + y = 32
<=> 8k + 8t = 32
=> k + t = 4
mà \(k;t\inℕ^∗\)
Lập bảng xét các trường hợp :
k | 1 | 3 | 2 |
t | 3 | 1 | 2 |
x | 8 | 24 | 16 (loại) |
y | 24 | 8 | 16 (loại) |
Vậy các cặp (x;y) thỏa mãn là : (24 ; 8); (8;24)
Ta có : 5x+12y=169 , suy ra 12y<169 mà 169<123=1728 , suy ra 12y<123 , suy ra y=1 hoặc y=2
TH1: y=1 , ta có:5x+121=169 , suy ra 5x+12=169 , suy ra 5x=169-12=157 mà y là số tự nhiên , suy ra không có giá trị của y
TH2:y=2 , ta có:5x+122=169 , suy ra 5x+144=169 , suy ra 5x=169-144=25 , suy ra 5x=52 , suy ra x=2
Vậy (x,y)=(2,2)
X=1 Y=8 ☺️☺️☺️ Bài khó quá chừng