Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có y ' = 4 sin 2 x cos x sin x - ( 2 m 2 - 5 m + 2 ) cos x = cos x [ ( 2 sin x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ]
Xét trên ( 0 ; π 2 ) ta thấy cos x > 0 , để hàm số đồng biến trên khoảng này thì ( 2 sin x - 1 ) 2 - ( 2 m 2 - 5 m + 3 ) ≥ 0 với ∀ x ∈ ( 0 ; π 2 ) hay ( 2 m 2 - 5 m + 3 ) ≤ 0 ⇒ 1 ≤ m ≤ 3 2 do m nguyên nên tồn tại duy nhất m=1
Đáp án B
Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0
Đáp án D
Điều kiện: x ≠ m .
Đạo hàm y ' = − m 2 + 4 x − m 2 ;
Hàm số đồng biến trên khoảng 1 ; + ∞ ⇔ y ' > 0, ∀ x ∈ 1 ; + ∞ x ≠ m
⇔ − m 2 + 4 > 0, ∀ x ∈ 1 ; + ∞ x ≠ m ⇔ − 2 < m < 2 m ∉ 1 ; + ∞ ⇔ m ∈ − 2 ; 1